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Lecture Outline

Goal: Overview of Digital Image Processing
Topics:
Scope of image processing field
State of the art in digital image processing
Outline of main image processing stages
Components of a system
Applications



What is Digital Image Processing?

Answer: Manipulation of digital images by computer.

Image processing focusing on two main tasks

Improvement of pictorial information for human interpretation and
high level processing

Processing of imaging data for storage and transmission.



Origins of Digital Image Processing

- Telecommunications and
more specifically
transmission of pictorial
content.

- Technological
breakthroughs in
electronics, digital
computers and
programming languages,
led to the foundation of
Image processing.

- Early computer techniques
aimed to correct distortions
In images of the moon
transmitted by Ranger 7
(Jet Propulsion Lab, 1964).

" § FIGURE 1.4 The
first picture of the
moon by a US.
spacecraft. Ranger
7 took this image
on July 31, 1964 at
9:09 am. EDT,
about 17 minutes
¥ before impacting

& the lunar surface.
(Courtesy of
NASA.)




Computing Machinery Origins

- Antiquity: Abacus
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Computing Machinery Origins

Modern times: Von Neumann architecture

Keyboard
Control Unit _ Mouse
Main
Memory Input
H Devices
Display
Registers Secondary |/
) — Memory -
N — Printer
L1 [ Storage Output
Devi
Central Processing Unit evices

B
(CPU) s



Related Areas

Image Computer Computer
“ Processing Vision Graphics



Image Processing

Image Enhancement

Edge Detection
Segmentation




Computer Vision

Shape,
Shape Extraction, Appearance,

Object Recognition, Motion, and
3D reconstruction other
Models




Computer Vision
P

Output:
ill
Model /

Cameras Images
*. Source: CVL, UNR-Reno
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Real Scene




Computer Graphics

Shape,

Appearance, Compute Light

Interaction and
Geometric Projection
from 3D to 2D

Motion, and
other
Models




Computer Graphics

Projection, shading, lighting models

Output: C )\
.
Image

Geometric Models

Synthetic
Camera

*- Source: CVL, UNR-Reno



Image Processing Application Fields

The range of applications of digital image processing Is very
broad.

We can categorize them by the imaging source.

Imaging data is mostly sensed in the electromagnetic energy
spectrum.

Other sources include acoustic, ultrasonic and electronic.
In the electromagnetic energy spectrum the following types are
acquired

X-ray

Gamma-ray

Untraviolet band

Visible and Infrared bands

Microwave band

Radio band

Others (acoustic, ultrasonic, electron microscopy)



Gamma-Ray Imaging

High energy band in
EM spectrum.

Applications in nuclear
medicine and
astronomical
observations.




Gamma-Ray Imaging in Nuclear Medicine

Administer radioactive agent
in patient’s body.

Agent emits gamma rays as
It decays.

Used to locate sites of
pathology (tumors for
example) in bone, lungs and
other tissues.

Examples: Single Photon
Emission Computed
Tomography (SPECT),
Positron Emission
Tomography (PET) imaging.




Gamma-Ray Imaging in Astronomy

Astronomical observations: sense gamma-ray band
produced by natural radiation of imaged scene.




X-Ray Imaging

X-rays are generated in a
vacuum tube with anode and
cathode.

Cathode is heated, electrons
are released to anode.

When electron strikes a
nucleus, x-ray radiation is

emitted. P g EEL
Energy is controlled by b ‘
voltage applied across anode ¥ ) e

and by current applied to
filament of cathode.

X-rays pass through patient,
some absorbed by tissues,
others falling on the film.




Digital X-Ray Imaging

Two methods
Digitize x-ray films, or
Use phosphor screens
or other devices to
convert x-rays to light,

passed to light
sensitive system.




Ultraviolet Imaging

Fluorescence
mIicroscopy

Use ultraviolet source to
excite fluorescent
material.

Lights is emitted in red
light wavelengths.




Light microscopes use
visible light to detect
small objects.

Further categories of
visible light microscopy
are optical and
fluorescence
microscopy.

Applications
pharmaceutical
microinspection

. . . abc
material characterization. d«¢
FIGURE 1.9 Examples of light microscopy images. (a) Taxol (anticancer agent),
magnified 250, (b) Cholesterol—40>. (c) Microprocessor—60>. (d) Nickel oxide
thin film—o600>. (e) Surface of audio CD—1730x. (f) Organic superconductor—
450 (Images courtesy of Dr. Michael W. Diavidson, Florida State University. )



Magnetic Resonance Imaging (MRI)

Patient under a
powerful static magnet
field B,.

Radio Frequency (RF)
Coil passes radio
waves through body.

Acquire response
magnetic dipoles
(mostly protons) in
body and reconstruct
Image.




o
Imaging Besides the EM Spectrum

There exist imaging techniques that
acquire information outside the EM
spectrum.

Examples are acoustic imaging,
electron microscopy, and synthetic
Images.




Acoustic

Imaging acquired in lower frequencies (hundreds of Hz)
for geological applications. Higher frequencies (millions of
Hz) are sensed for ultrasound imaging.

Applications: mineral and oil exploration and geology.

FIGURE 1.19
Cross-sectional
image of a seismic
model. The arrow
points to a
hydrocarbon {oil
and/or gas) trap.
(Courtesy of

Dir. Curtis Ober,
Sandia National
Laboratories.)




Ultrasound Imaging

Sound waves propagate
mechanical energy
causing periodic vibration
of particles in a continuous
elastic medium.

Unltrasound imaging
system components

piezoelectric crystal-based
transducer (transmitter and
receiver)

control panel with pulse
generation and control

computer processing a.nd
display system.




Electron Microscopy

This modality operates similarly to optical microscopy,
except for using a focused beam of electrons instead of
light to image a specimen.




Synthetic Imaging

Computer-generated
Images. Examples:
Fractals

3-D renderings using
computer graphics.




Imaging In the Visible Spectrum

< $ pY A P -

Ubiquitous in
modern ;
world.

Used for

everyday

activities, also
supported by
technological
advances.



Multiple Imaging Modalities

It is frequently useful to acquire multiple images of the same
scene that sense different wavebands, or physical properties.

Information of multiple modalities is combined before further

analysis.
Gamma X-ray Dpt]::"tl Infrared Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of images) covering the electromagnetic spectrum.
(Courtesy of NASAL)



Components of Image Processing

System

) FIGURE 1.24
Network Components of a
B = general-purpose
image processing
system.
Image displays Computer Mass storage

et V2

Specialized
Hardcopy image processing
hardware

Image sensors

Problem
domain

Image processing
software




Image Processing Tasks

Outputs of these processes generally are images

Problem
domain

Color image
processing

Wavelels amnd
mulliresolution
processing

Compression

Morphological
processing

Image
restoration

HAPTERS
Image
filtering and
enhancement

Image
gCquisilion

Knowledge base

| Segmentation

Eepresenlation
& description

Oibject
reCOgnilion

Outputs of these processes generally are image attributes

FIGURE 1.23
Fundamental
steps in digital
image processing,
The chapter(s)
indicated in the
boxes is where the
material
described in the
box is discussed.



Key Stages In Digital Image Processing

Image
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Key Stages in Digital Image Processing:
Image Aquisition

Morphological
Processing
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Key Stages in Digital Image Processing:
Image Enhancement
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Processing
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Key Stages In Digital Image Processing:
Image Restoration
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Key Stages in Digital Image Processing:
Morphological Processing
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Key Stages in Digital Image Processing:
Segmentation

» Image Restoration > Morpholo_glcal
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Key Stages in Digital Image Processing:

Representation & Description
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Key Stages in Digital Image Processing:

Object Recognition
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Key Stages in Digital Image Processing:

Image Compression

Image
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Key Stages in Digital Image Processing:
Color Image Processing
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plications: Image Enhancement

One of the most common uses of DIP techniques:
Improve quality, remove noise etc.




Applications: Space

Launched in 1990 the Hubble
telescope can take images of
very distant objects.

However, an incorrect mirror
made many of Hubble's
Images useless.

Image processing
techniques were
used to fix this.


http://en.wikipedia.org/wiki/Image:Hst_sts82.jpg

Applications: Medicine

Take slice from MRI scan of dog heart, and find
boundaries between types of tissue.
Image with gray levels representing tissue density.
Use a suitable filter to highlight edges.

Original MRI Image of a Dog Heart Edge Detection Image



Applications: GIS

Geographic Information Systems

Digital image processing techniques are used extensively to
manipulate satellite imagery.

Terrain classification

Meteorology




Applications: Industrial Inspection

- Human operators are
expensive, slow and unreliable.

- Make machines do the
job instead.

- Industrial vision systems
are used in all kinds of
industries.




Applications: PCB Inspection

Printed Circuit Board (PCB) inspection.

Machine inspection is used to determine that all components
are present and that all solder joints are acceptable.

Both conventional imaging and x-ray imaging are used.




Applications: Law Enforcement

222818126

Image processing techniques
are used extensively by law
enforcers.

Number plate recognition for speed
cameras/automated toll systems.

Fingerprint recognition.

,,_—_.A‘\_

%\f,ﬁ\\\\f-:




Examples: HCI

Try to make Human Computer
Interaction (HCI) more natural.
Face recognition.
Gesture recognition.




Applications: video frame stabilization

Video frame t

I: vertical projection

oW indes (p)

J: vertical projection

SSD(U) =" (1(x)— I (x—u))*

Augsp= argmin SSD (u) — Np 4
u

!

Stabilized frame t+1
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Lecture Outline

Goal: Introduction to basic concepts of image processing
-Topics:

Human vision

Electromagnetic spectrum

Imaging sensors

Image sampling and quantization



Human Vision

- Eye structure - The lens changes shape
to achieve proper focus

FIGURE 2.3

Graphical

representation of
FIGURE 2.1 .
Simplified the eye looking at

di f a palm tree. Point
agram ol a cross C is the optical

section of the center of the lens.
human eye.



Light and the Electromagnetic
Spectrum

Electromagnetic waves: propagating sinusoidal waves
with wavelength A.

Energy of one photon (electron volts)
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| 1 | | | | | | | | | | | | | |

Frequency (Hz)
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Wavelength (meters)
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Gamma rays X-rays Ultraviolet Infrared Microwaves Radio waves

Visible spectrum

04108 0.5 2 107" 0.6 x 1078 0.7 = 10°°
Ultraviolet Violet Blue Green  Yellow Orange Red Infrared

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation,
but note that the visible spectrum is a rather narrow portion of the EM spectrum.



o
Light and the Electromagnetic

Spectrum

Wavelength A\ and frequency v are related by the expression

A= —

v

where ¢ is the speed of light (2.998 x 10%3m/s).
The energey E of electromagnetic waves is given by

E=h-v

where h is Planck’s constant.



Light and the Electromagnetic

Spectrum
Definitions:
Monochromatic: light void of color.
Chromatic light: 0.43 to 0.79nm.
Radiance: total amount of energy flowing from source.

Luminance: amount of energy from a light source
perceived by observer.

Brightness: subjective descriptor of light perception that is
practically impossible to measure.

Non-visible wavelengths:
Gamma rays, X-rays, near infrared, far infrared.



Image Sensing and Acquisition

Most of the image acquisition processes follow the model of
“illumination” source and “scene”.

The “illumination” source radiates energy that is reflected or
absorbed by elements of the “scene”.

lllumination sources may be a visible light source, infrared, X-
ray transmitter, MRI coll, an ultrasound probe, etc.

The scenes can be human cells, buried rock formations, a
meteorite, a human brain or liver, a human face, indoor/outdoor
landscapes, etc.

0 umina
- source
/i




Image Sensing and Acquisition

Incoming energy Is
transformed into

voltage by sensors that
respond to the specific

type of energy that is
detected.

The voltage is then
converted into digital
signal by a digitization
system.

we | 1]
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FIGURE 2.12
(a) Single imaging

SENSOT.

(b} Line sensor.
(c) Array sensor.



Single Sensor

Main idea: incoming
energy transformed
Into voltage.

Example: photodiode,
that converts light into
electrical signal.

A 2D image can be
acquired using
mechanical motion In
two dimensions

Energy

|1

ij-r_\) ]

Power in —

il
| | -
_/ - l, \pnes Voltage waveform out
! g

Sensing material

Housing

Film

4 '
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| |: Rotation
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- Linear motion

~ - .
“———= (One image line out

per increment of rotation
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Sensor Strips

One image line out per
increment of linear motion

Cross-sectional images
of 3-D object

In-line arrangement of D object
sensors in a strip

- Examples ..
- flat bed scanners wM/ﬁwaqu
- aerial imaging Sensor ring

computed tomography.

ab
FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.



Sensor Array

Individual sensors are
arranged in 2D arrays.

Examples

Digital cameras that use
CCD arrays

Ultrasonic devices.

Response of CCD
sensor is proportional
to the integral of light
energy projected onto
sensor’s surface.




Image Formation Model

2D images are denoted by two-dimensional functions f(z,y) with spatial

coordinates (z,y).
Because values of f are propotional to energy detected by the sensor we have

that

0 < f(z) < inf.

The function f(x) has two components
1. amount of source illumination incident on scene, denoted by i(z,y), illu-

mination.
2. amount of illumination reflected by objects in the scene, denoted by

r(x,y), reflectance.
Then we have that

f(xay) — Z(:Bay) ) ?“(ZE,y)
with 0 < i(x,y) < inf and 0 < r(z,y) < 1.



Image Formation Model

Output (digitized) image

Mumination {energy)

9
N

(Internal) image plane

Scene element

hcdf:

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination™) source. (b) An

element of a scene. (¢) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.



Image Sampling and Quantization

Sensors produce an analog signal output related to the physical phenomenon
being sensed.

An acquired scene is continuous both in terms of coordinates and amplitude
values.
To create a digital image, two stages are followed
Sampling
Quantization

A B a b
Ll Ghdas cd

FIGURE 2.16
e ", Generating a

A digital image.
A “‘\“\ (a) Continuous
W image. (b) A scan
line from A to B
in the continuous
image, used to
illustrate the
concepts of
sampling and
quantization.
(c) Sampling and
quantization.
(d) Digital
scan line.
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Image Sampling and Quantization

Sampling is the digitization of the coordinates.
Quantization is the digitization of the amplitude.

A B A B
B0y Pl = oooo mooo

Cuanteation

M"m\m

LUl L LU L L
Sampling




Image Sampling and Quantization

Sampling and Quantization stages depend on sensor
arrangement

Sensors arrangements vs. digitization factors

Single sensor mechanical motion: number of mechanical
Increments.

Sensing strip: number of sensors in strip, number of mechanical
Increments.

Sensing array: number of sensors establishes sampling limits in
both directions.



Image Sampling and Quantization

- End result depends on both sampling and quantization
stages.

ab

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image
sampling and quantization.



Digital Image Representation

After acquisition is completed, a 2D digital image is represented by a 2D
array.

Let the image be denoted by f(x,y) and let the array consist of M rows and
N columns.

The pair (z,y) denotes the discrete coordinates, or indices.

The index values are x =0,1,2,.... M —1and y=0,1,2,.... N — 1.

The image intensity at the origin is f(0,0).

The image plane spanned by the coordinates is called the spatial domain,
and xr and y are called the spatial coordinates.



Digital Image Representation

A 2D image can be displayed as
A surface
Visual intensity array
Numerical array

flx, ¥)

!
o m,m’u‘m,
i i
“‘L .

I 'pmlvpu,l,v{lfpl il ‘
mmmhm.'n‘l’fwm‘J‘H1 h

w.'. m.mn.m.h i |

“’II I | i
( |thlh1

YOrigin YOrigin

v

0000000---0000000
000000 000000
00000 00000
0000 0000
000 --555-- 000
000 P 000
> T

111--

11
000 000
000 : 000
0000 0000
00000 00000
000000 000000
0000000---0000000



Digital Image Representation

- Numerical array representation is used for algorithm
development and processing.

f(0,0) f(0.1) fON - 1)
Fxy) = f{15=['} fﬂ; 1) f{laﬁ: — 1)
| f(M -1,0) fM-11) - f(M—-1LN-1)_
a0 gy ... g N-1
A = -:‘.l1.1.|] 'ﬂ'l.,l -:‘.I]‘Il.n.r_]

_AMm-1,0 4M-1,1 .-+ GM-1N-1_



Digital Image Representation

During digitization the number of rows M, columns N and discrete intensity
levels L have to be determined.

The image dimensions M and N just need to be positive integer numbers.

The number of intensity levels needs to be a power of 2, mainly due to data
storage protocols and requirements.

So L = 2% and the intensity can have values in 0,1, ..., L — 1.



Digital Image Representation

Definitions:

The ratio of maximum intensity to the minimum intensity of an
Imaging system is called the dynamic range.

Upper limit is defined by saturation and minimum level is defined by
noise level.

Image contrast is the difference in intensity between the highest
Intensity and the lowest intensity levels in an image.

The number b of bits required to store an image is

b=M-N -k



Spatial Resolution

Spatial resolution is a
measure of the smallest
discernible detall in the
Image.

To be meaningful it needs
to be stated using units of
distance.

Examples
75 dots per inch

1024x1024 px, field of view
1000mmx1000mm

ab
cd

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250
dpi, (b) 300 dpi, (c) 150 dpi. and (d) 72 dpi. The thin black borders were added for
clarity. They are not part of the data.



Spatial Resolution

Effect of decreasmg spatlal resolutlon onllmage guality.

Original

o Rescale
factor: 1/4

(1153x1281) &

Rescale Rescale

factor: 1/16 factor: 1/64




Intensity Resolution

Refers to the smallest discernible change in intensity
level.

Common intensity resolution for generic imagery is 8 bits.

In medical applications on can encounter 10, 12 or 16 bit
resolutions.



Intensity Resolution

- Effect of decreasing intensity resolution on image quality.

ab
cd

FIGURE 2.21

(a) 452 » 374,
256-level image.
(b)—{d) Image
displayed in 128,
64, and 32
intensity levels,
while keeping the
image size
constant.

e f
Eh

FIGURE 2.21
(Continued)
(e)—{h) Image
displayed in 16. 8,
4, and 2 intensity
levels. (Original
courtesy of

Dr. David R.
Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)



Image Interpolation

Interpolation is the process of using known data to
estimate values to unknown locations.

In Image processing it finds applications in image resizing,
zooming, geometric transformations and image
registration.

Three popular methods of interpolation are

Nearest neighbor
Bilinear
Bicubic



Image Interpolation — Nearest
Neighbor

Algorithm
Generate output image array

Scan each pixel location.
Calculate the corresponding spatial coordinates in the original image
Find the nearest pixel in original image — nearest neighbor
Assign intensity of nearest neighbor to the output pixel




Image Interpolation — Bilinear

Algorithm

Generate output image array
Scan each pixel location.
Calculate the corresponding spatial coordinates in the original image
Use Manhattan Distance-weighted intensity sum of the 4-neighbors.
Alternatively, the interpolant can be expressed as

v(z,y) =ax + by + cry +d

i Qy; . H, E ez
1 A AR A S column —»

14 15

EP 14.5
_y--------:--------------.I'---------------------:—----- = _A_\ e J}
: : : i 1} 150.55 { 210
H 1




Image Interpolation — Bicubic

Similar algorithm with one difference

Uses the 16-nearest neighbors of a point P(Xx,y) to
estimate intensity.

3 3
v(z,y) = Z Z ai;'y’

i=0 j=0

The coefficients can be found analytically or
computationally.

Bilinear interpolation is a special case when the upper
limits of i and | are 1.



Image Interpolation Methods-

Comparisons

Original
scale

(1153x1281) i

Bicubic,
Rescale
factor: 1/16

Nearest Neighbor,
Rescale
factor: 1/16

Bilinearr,
Rescale
factor: 1/16
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Lecture Outline

Goal: Introduction to basic concepts of image processing
-Topics:

Spatial relationships between pixels

Mathematical tools in digital image processing



Image file formats

Many image formats adhere to the following
simple model:

Header

Data (line by line, no breaks between lines).

"hagic |
‘number
bytes

image data
header N e i




Image file formats (cont.)

Header contains at least:

A signature or “magic number” (i.e., a short
sequence of bytes for identifying the file format).

The width and height of the image.

' magic
‘number '
: bytes. :

image data
header e e e G R i a s w




Common image file formats

PGM (Portable Gray Map)

PNG (Portable Network Graphics)

GIF (Graphic Interchange Format) —
JPEG (Joint Photographic Experts Group)
TIFF (Tagged Image File Format)

FITS (Flexible Image Transport System)



PGM format

A popular format for grayscale images (8 bits/pixel)
Closely-related formats are:
PBM (Portable Bitmap), for binary images (1 bit/pixel)
PPM (Portable Pixelmap), for color images (24 bits/pixel)

s

# a simple PGM image

7 T 255
120 120 120 120 120 120 120
120 120 120 23 120 120 120
120120 120 38 190 190 190
1200 83 ' 43 © 33 33 358170
120 120 120 33 120 120 120
120 120 120 33 120 120 120
120 120 120 120 120 120 120

P5
# a simple PGM image
7 [ 255

ASCII or binary (raw) storage

Signatures of the various PBM, PGM and PPM image formats.

Signature Image type Storage type

Pl binary ASCII
P2 greyscale ASCII
) RGB ASCII
P4 binary raw bytes
P5 greyscale raw bytes
P6 RGB raw bytes




Reading/Writing PGM images

—@ store to file

Use “write”

image
processing

—_’..

Writelmage.cpp
2D array of int 1D array of unsigned char
isge: A yofint) (1D array gned char)
processing convert to
——& | array of integers ———e» unsigned
characters
. > . >
Readimage.cpp
(1D array of unsigned char) (2D array of int)
read from [ ) ( 3
file : it to
unsigned conve
Use “read” characters = array of integers
. > . "




How do | "see” images on my
computer?

- Linux:
- display
- Gimp
- ImageJ
- Windows:
- Gimp
- Photoshop
- Irfanview
- ImageJ

gc Click to paint (Ctrl to pick a color)




How do | convert an image from one
format to another?

- Use “save” or “export”
option




o
Spatial Relationships between

Pixels

- Pixel neighborhoods
- Adjacency, connectivity, regions and boundaries
- Distance measures



Pixel neighborhoods

Pixel p(x,y):

a) 4-neighbors Ny(p) : (x + 1,y),(x — 1,y), (z,y + 1), (z,y — 1)

b) 4-diagonal neighbors: Np(p) : (z + Ly +1),(z + 1L,y — 1),(z — 1,y +
1):(39 o lay_ 1)

c¢) 8-neighbors Ng(p): N4(p) and Np(p)

4-neighbors 8-neighbors



Adjacency Types

Let V' be the set of intensity values used to define adjacency. For binary
images usually V = {1}. Let p and ¢ two pixels of the same image.
Adjacency types

e 4-adjacency: p and ¢ are 4-adjacent if ¢ is in N4(p).
e 8-adjacency: p and g are 8-adjacent if ¢ is in Ng(p).

e m-adjacency (mixed adjacency): ¢ is in Np(p) and N4(p) N N4(g) has no
pixels with value V.

1 1 1 0 0 0o o0 O

1 1 1 0 1 0 O _ |

1 1 1 0 1 0 Pixels that are 8-adjacent
1 1 1 0 O 0 but not 4-adjacent

1 1 1 0 0 o0 1 o0

1 1 1 0 0 o0 1 O

1 1 1 0 0 1 1 O

1 1 1 0 0 0 0 o



Connectivity

Let V' be the set of intensity values used to define adjacency. For binary
images usually V' = {1}. Let p and ¢ two pixels of the same image.

o Digital path from p(z,y) 10 4(s,£): (&), (1, 31), - (25, 91), (5, 1), where
pi—1(xi—1,v;—1) and p;(x;,y;) are adjacent. Closed path if (x,y) = (s, 1)

e Let S be a subset of pixels in an image. Pixels p and ¢ are connected in
S if there is a path between p and ¢ with members in S.

e For a p € S, the set of pixels that are connected to it in S is called a
connected component of S. If S has one connected component, then S is

a connected set.
Original image array

1 O 0

Connected components
(4-adjacency)
1 1 0 O

PR RPRRRPRERRBR
PRPRRPRRPRRRERRBR
PR RPRRPRR
ololololololo)
oNolNolNolNol N o)
OPrRrPO0OO0OO0OFrEFkO
OFRRFRPRRLRRFRPROO
oNolNolNololNolole)
PR RPRRRRERRPR
N el
P RPRPRRPRR
olololololNolo)
OO O0OOONN
OCWOOOMNNDO
OCwWwwwooo
cNoNeoloNoNoNeoNe



Regions

e Let R be a subset of pixels. If R is a connected set, then it is called a
region.

e Regions R; and R; are adjacent if their union forms a connected set.
Otherwise R; and R; are disjoint.

e Let k disjoint regions Ry, k = 1,2, ...,k R, be the union of all £ regions and
R the complement of R,,. Then R,: foreground and R{: background.

Original Image Disjoint Regions

Background




Boundaries

Boundary of a region R is the set of points adjacent to points in the
complement of R.

The boundary is also called inner boundary.
Outer boundary is the background’s boundary.
Many boundary following algorithms follow the outer boundary.

Boundary is a mostly ”global” concept.

Edge is a "local” concept related to intensity level discontinuity at a point.

Original Image Regions and Boundaries




Adjacency, Regions, Boundaries

01 1 0 1--1 0 1--1
01 0 0 170 010
00 1 0 01 0 01
11 1) 00000 0 0 0
1 0 1}R; 011 0 0 0 1 0
ﬁi“l‘*npj 001100 01 0
0 U‘\\iﬁ" 0 luil:rl 0 0 1 0
11“1*\12;- 001 110 010
11 1) 00000 0 0 0

abc

de f

FIGURE 2.25 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency 1s
shown by dashed lines: note the ambiguity). (c¢) m-adjacency. (d) Two regions (of 1s) that
are adjacent if 8-adjecency is used. (e) The circled point is part of the boundary of the
I-valued pixels only if 8-adjacency between the region and background is used. (f) The
inner boundary of the 1-valued region does not form a closed path, but its outer
boundary does.



Adjacency, Regions, Boundaries

1
i
2 0
A
3
(a) (c)
. s 7

#
2

VA A L
1V 1T V] v

(d) (e) (f)
Figure 6.13: Inner boundary tracing. (a) Direction notation, 4-connectivity. (b) 8-connectivity.
(¢) Pixel neighborhood search sequence in 4-connectivity. (d), (e) Search sequence in 8-
connectivity. (f) Boundary tracing in 8-connectivity (dotted lines show pixels tested during
the border tracing). © Cengage Learning 2015.



Distance Measures

For pixels p(x

@) Dp.g) 30
(b) D(p,q) = D(q,p)
(¢c) D(p,2) < D(p,q) + D(q, 2)

e Euclidean Distance: D.(p,q) = \/(IE — 8)2 + (y — t))2

e D, distance, city block distance, Manhattan distance: D4(p,q) = |x—s|+
ly —t|

e Dy distance, or chessboard distance: Dg(p,q) = max(|z — s|, |y — t|)

e D, and Dg distances do not depend on any paths between points. D,, is
the shortest m-path between two points.



Distance Measures

City block

50 100 150 200 50 100 150 200



Mathematical Tools in Digital Image
Processing

Array vs. Matrix Operations
Linear vs. Non-linear Operations
Arithmetic Operations

Set and Logical Operations
Spatial Operations

Vector and Matrix Operations
Probabilistic Methods



Array vs. Matrix Operations

az1 a22 521 522

A:[all 012] B:[bll b12:|

Array Product
ai; a2 bii b2 | _ | anbin aizbiz
a1 Q22 a21b21  a22b29

Matrix Product

ailr a2 bi1 b1 _ a11b11 + a12b21  ai1b12 + a12b922
as1 G292 ba1 Do a21011 + a22021  a21b12 + as2b99



o
Linear vs. Nonlinear Operations

e General operator
H = H [f(z,y)] = g(z,y)

H is a linear operator if

H[a; fi(x,y) +a;fi(2,y)] = a;H [fi(z,y)]+a; H [f;(z,y)] = a;9:(x,y)+a;g;(z,y),

where a;,a;, fi(x,y), f;(x,y) arbitrary constants and images.

e The two properties are called additivity and homogeneity.



Arithmetic Operations

Pixel-wise operations

s(z,y) = f(2,9) + 9(z,y)

d(z,y) = f(z,y) —g(z,y)

p(z,y) = flz,y) x g(z,y)

u(z,y) = f(z,y) + g(z,y)
(z,y) in the image plane

0<zx<M-1
0<y<N-1



Arithmetic Operations

Application: Image Averaging

abc
de f

FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)—(f) Results of
averaging 5. 10,20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)



Arithmetic Operations

Application: Shading Correction

abc

FIGURE 2.29 Shading correction. (a) Shaded SEM image of a tungsten filament and support, magnified
approximately 130 times. (b) The shading pattern. (c¢) Product of (a) by the reciprocal of (b). (Original image
courtesy of Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)



Arithmetic Operations

Application: ROI selection

20

| P

abc

FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to
1 and black corresponds to 0). (¢) Product of (a) and (b).



Set and Logical Operations

e When ordered pair a = (a1, a3) is an element of A we write a € A.
e Set-builder notation: ¢ = {w|w = —d,d € D}.

e We often represent pixel coordinates by ordered pairs
(z,y), i.e. R={(a,b)|(a,b) € Z%}

e Set A is subset of B: A C B.

e Union of A and B: AU B.

e Intersection of A and B: AN B.

e Disjoint sets: AN B = 0.

e Universe U: set of all elements in application.
e Complement of A: A° = {w|w ¢ A}.

e Difference between A and B: A — B ={w|lw € A, ¢ B} = AN B°.
Also A =U — A.



Set and Logical Operations

- Application: Sets of Coordinates

abc

de

FIGURE 2.31

{a) Two sets of
coordinates, A and B,
in 2-D space. (b) The A
union of A and B. AURB ANE
{c) The intersection B
of A and B. (d) The
complement of A. U
(e) The difference
between A and B. In
{(b)—(e) the shaded
areas represent the
members of the set
operation indicated.

Al:




Set and Logical Operations

Application: Binary Image Regions

FIGURE 2.33
[lustration of
logical operations
involving
foreground
{(white) pixels.
Black represents
binary 0s and
white binary 1s.
The dashed lines
are shown for
reference only.
They are not part
of the result.

MNOT{A)

A
| =

(A} AND (B)—

(LY




Set and Logical Operations

e In grayscale images we can define union as a max operator and intersection
as a min operator.

abc

FIGURE 2.32 Set
operations
involving gray-
scale images.

(a) Original
image. (b) Image
negative obtained
using set
complementation.
(c) The union of
(a) and a constant
image.

(Original image
courtesy of G.E.
Medical Systems.)

MHeN.

" -
‘
"G




Spatial Operations

s=T(z)

e Single pixel operations alter individual pixel intensities. s

Expressed as a transformation 7', s = T'(2),

_________

z: pixel intensity, s: mapped intensity.

e Neighborhood operators

L))

Let Sz, be a set of coordinates in a neighborhood centered at (z, y)

A neighborhood operation is an operation applied to pixels in S, ad
produces and output assigned to the pixel with coordinates (x,y) in the
output image.

Example: averaging filter



Spatial Operations

- Application: spatial filter - averaging

ab
cd n
FIGURE 2.35 \

Local averaging al ] =

using (x.y) (x.y)
nelghbqrhood The value of this pixel
processing. The Sy is the average value of the
procedure is pixelsin S,

illustrated in

(a) and (b) fora
rectangular
neighborhood.
(c) The aortic
angiogram
discussed in
Section 1.3.2. Image f Image g
(d) The result of
using Eq. (2.6-21)
withm = n = 41.
The images are of
size 790 x 686
pixels.




Spatial Transformations

e These transformations modify the spatial relationship between pixels in
the image.

e They include two operations:
1) spatial transformation of coordinates

2) intensity interpolation that assigns intensity values to transformed pix-
els.

Notation:
(z,y) = T{(v,w)}
(v,w) in original space, (x,y) in transformed space.

Example: (z,y) = T{(v,w)} = (v/2,w/2), downsampling by 2.



Spatial Transformations

TABLE 2.2
Affine transformations based on Eq. (2.6-23).
Affine Transform [Transformation Affine Matrix, T Coordinaie

lz oy 1] T
v w1 |

ti1 tiz O Sealing
=[vw1] t21 t220 {

0 X=cw
0 ¥ =
1

Example
[ y
x
Rotation cosf sinf 0 x=vcosf — wsind
—sinf cos@ 0 y=vcosf + wsinf
0 1] 1

Translation (1 0 0 x=v+i,

0 10 y=w+t

Shear (vertical) 1 0 0 x=v+ 5w

55 1 0 y=uw

Shear (horizontal) M 07 x=uv

0 0 yY=5p+w

=
= =
—




Spatial Transformations

Transformation can be implemented by forward mapping or inverse map-
ping.

Forward mapping Inverse mapping
leaves holes and produces complete
overlaps coverage
F.—-—s""]’ 1 ]
| = = 13 .-" ,_,...l-'_""{ 13 ’:/.J|
11| 12| 13 [E{y, T()] _j__..-a-e""f;j N 11| 12 | 13 [T, W] " __ﬂ..-ﬂ-:' NN B
21 | 22 ] 23 "" ij CI =0 N R 21| 22 | 23 "'_ p1 | ozi| z2 ] x| zx| s
31| 32| 33 | o x| 2 | e 31| 32 | 33 a1 | z1 | zx | oz x| 23
"'"3‘-._‘_‘_‘_ [ 31 "'-i."._”_‘E 3x| 33 3
"}""-u_._“_l oy e I

In Out In Out



Vectors and Matrix Operations

e Vector and matrix operations are usedin several image processing stages.

Typical examples are multispectral and color imaging.

e Example: rgb pixel intensities

<R
G
ZB

8y
I

e N-dimensional Euclidean distance:

D(z,@) = [(Z-a)" (7 - a)]"/?

e Linear transformations:

A(g_ Ef),

g1
I

A[M x NJ,Z[N x 1],d[N x 1].



Vectors and Matrix Operations

e We can represent an entire image by a vector with size M N x 1.

e Many linear processes are modeled as
g=Hf+1,

g, [ [MN x 1] -sized vectors for processed image, input image and
noise signal.

H : [MN x M N] matrix representing a linear process.



Image Transformations

e Processes are often characterized by working in the spatial or transform
domain.

e A class of 2D linear transformations can be expressed as
T(u,v) = Zi/‘r:f)l Ziv:_ol flx,y) - r(x,y,u,v)  Forward transform
f(z,y): input image  r(z,y,u,v): transformation kernel
(z,y): spatial variables  (u,v): transform variables.
flz,y) = Z?_Jl/‘f:_ol Zi\[:_ol T(u,v)-s(x,y,u,v)  Inverse transform

s(x,y,u,v): inverse transformation kernel.

T(u, v) R[T{u, v)]

Operation Inverse :

- oy —=| Trans - —= BLX, V)
fix, y) —{ Transform R transform ELX, ]
et i ™
Spatial T — ——" Spatial

domain Transform domain domain



Image Transformations

Transformation kernel - separable

’l“(:L‘, Yy, u, U) — Tl(.GU,’LL) ) er(y,fu)

Transformation kernel - symmetric

T’({L', Yy, u, U) — Tl(SU,’LL) ) Tl(yav)



Image Transformations

2D Fourier transform kernels

r(@,y,u,v) = e I/ MACYN),

1 . e—jQﬂ'(ux/M+vy/N)
MN ’

j=+v-1.
Discrete Fourier Transform pair:
T(u,v) =S M1 Z;V:_Ol f(x,y) - e 32 (ue/M+oy/N) — Eorward transform

flz,y) = 5% - Z,L]t/'r:_ol Zi\f:_ol T(u,v) - e??m(ue/M+vy/N)  Inyerse transform

s(z,y,u,v) =



Image Transformations

e Fourier transform kernels are separable and symmetric.

e Separable and symmetric kernels allow 2D transform to be computed as
successive 1D transformations.

e For symmetric and separable kernels and square images we can use a
matrix form for transformations.

Forward transform T = AFAT

F : M x M input image, A : M x M transform kernel, T" : M x M
transformed image.

Inverse transform  BTTB = BV AFAB.
If B=A"' F=DB"'TB, else
['=BTAFAB



Image Transformations

Fourier domain filtering example: image restoration.

ab
cd

FIGURE 2.40

(a) Image corrupted
by sinusoidal
interference. (b)
Magnitude of the
Fourier transform
showing the bursts
of energy responsible
for the interference.
(c) Mask used to
eliminate the energy
bursts. (d) Result of
computing the
inverse of the
modified Fourier
transform. (Original
image courtesy of
NASA.)




Probabilistic Methods

We can consider image intensity zp to be a random variable. Then
n

MN

Probability of intensity level zi : p(zx) =

Average intensity: m = Zi:_ol 2ep(2k) -

. . L1 .

Intensity variance: o =Y _ (2 —m)?*p(zx), measure of image contrast.
L—1 n :

nen, moment: jin(2) = > 1 _o (zr —m)"p(2k), measure of image contrast.

Probabilistic approaches are used for intensity transformation, image restora-
tion, image segmentation, texture description and object recognition to
name a few examples.

Often times, we have a number of 2D images and treat the third variable
as time.

Also, in several techniques the whole image is considered as a spatial
random event. Such formulations can be handled using random fields.



Probabilistic Methods

Example: contrast estimation by standard deviation.

: \
P, =

abec

FIGURE 2.41
Images exhibiting
(a) low contrast,
(b) medium
contrast. and

(c) high contrast.
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Intensity Transforms and Spatial Filtering

Outline

@ Background

© Basic Intensity Transformation Functions

© Histogram Processing



Intensity Transforms and Spatial Filtering
Background

Introduction

@ This field of study deals with image processing in the spatial
domain.

@ The spatial domain processes can be expressed by
g(x,y) = TIf(x )l

@ Main concepts



Intensity Transforms and Spatial Filtering
Background

Introduction

@ This field of study deals with image processing in the spatial
domain.

@ The spatial domain processes can be expressed by
g(x,y) = TIf(x )l

@ Main concepts
Intensity Transformations are applied to a single pixel.



Intensity Transforms and Spatial Filtering
Background

Introduction

@ This field of study deals with image processing in the spatial
domain.

@ The spatial domain processes can be expressed by
glx,y) =TIlf(x,y)l.

@ Main concepts
Intensity Transformations are applied to a single pixel.
Spatial Filtering is applied to the neighborhood of a pixel.



Intensity Transforms and Spatial Filt
Background

Point Processing

@ It is applied to single pixels.

@ Form of intensity mapping (examples: contrast stretching,
thresholding)

s=T(n) s=T(r)

5y = Tirp) |[=———— !

Light

T(r)— T(r)—~

Dark
[Dark

k
Dark =— Light Dark =— Light



Intensity Transforms and Spatial Filtering
Background

Neighborhood processing

@ Usually applied as spatial filtering (examples: averaging filter,
lowpass filter). J

Origin N

— (X, ¥)

3 x 3 neighborhood of (x, y)

Image f

Spatial domain
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Basic Intensity Transformation Functions

These transformations are usually of the form s = T(r). ]
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Basic Intensity Transformation Functions

These transformations are usually of the form s = T(r). ]

o Image Negatives



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Basic Intensity Transformation Functions

These transformations are usually of the form s = T(r). )

o Image Negatives

e Log Transformations



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Basic Intensity Transformation Functions

These transformations are usually of the form s = T(r). )
L-1
) Negative
@ Image Negatives i
LA —
e Log Transformations 2 y
. . . S : ath power
@ Piecewise-linear ot g
Transformation Functions F
o Contrast stretching LA 7
o Intensity-level slicing Ldeitiy Ipverielog
o Bit-level slicing 0 / L
0 L4 Le 3L/ L-1

Input intensity level, r



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Image Negatives

@ Let an image with pixel intensities in [0, L —1].

@ The negative of an image calculated by s=L—1—r.

25 i
100 150 200 250 300 350 450 500

o
100 150 200 250 300 350 400 450 500




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Log Transformations

o Calculated by s = clog(1+r). ]

100 150 200 250 300 350 400 450 500

00 150 200 250 300 350 400 450 500



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Gamma Transformations

o These transformations have
the basic form s = cr?.

Output intensity level, s

o Lja Lj2 3L/4 L-1

Input intensity level, r



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Gamma Transformations - Results




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Gamma Transformations - Results




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Contrast Stretching

Output intensity level, 5
T
=
|

Process that expands the
range of intensity levels in
an image so that it spans
the full range of the
recording medium or
display device.

(ri. 51)
1 1 1
0 LA L2 3.4 L-1
Input i




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation

Intensity-level Slicing Approaches

© Display in one value (white)

Functions

all intensities of interest and
in another (black) all other
intensities. L
@ Set to a fixed value the

desired range of intensities
but leave all other intensities
unchanged.




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Intensity-level Slicing




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Bit-plane Slicing

@ Generate black and white
images that correspond to
the n-th bit value.

One 8-bit byte ———
e

@ This process can be used to
determine if the number of
bits used for quantization is
adequate.

Bit plane 8
(most significant)

Bit planc |
(least significant)



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Bit-plane Slicing




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Reconstruction after bit-plane slicing

Figure: Reconstructed images using i) bit planes 8 and 7 ii) bitplanes 8,
7 and 6, and iii) bitplanes 8,7, 6, 5.




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Bit-plane Slicin

o L

g




Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Reconstruction after bit-plane slicing

Figure: Reconstructed images using i) bit plane 8, ii) bitplanes 8 and 7,
and iii) bitplanes 8,7 and 6 (left to right).




Intensity Transforms and Spatial Filtering

Histogram Processing

Histogram Processing

o Histogram of a digital image
with levels [0,L—1] is a
discrete function h(ry) = ny.

o ry: k-th intensity value
o ny: number of pixels with
intensity ry.

@ Normalized histogram:
() = 1
P\rk VN

o B 8 8 8 8§ % B



Intensity Transforms and Spatial Filtering

Histogram Processing

Histogram Processing

We observe that an image with intensities that occupy a large
range in a uniform fashion appears to have high contrast and large
variety of gray tones.

Histogram Examples

T T T T
Histogram of dark image

Histogram of low-contrast image

Histogram of light image Histogram of high-contrast image

Y
o

-




Intensity Transforms and Spatial Filtering

Histogram Processing

Histogram Equalization

@ Let r be the image intensity and s = T(r),0<r<L—1 an
intensity mapping. Our requirements are:
@ T(r) be monotonically increasing function in [0, L —1].
Q@0 T(r)<L-1for0<r<L-1.

T T(r)
L-1 L-1
Single
value, 5, T(r) —
Single e
value, 5,
- r r
0 Ti L-1

0 Multiple Single . —1
values  value



Intensity Transforms and Spatial Filtering

Histogram Processing

Histogram Equalization

@ Intensity levels of an image can be viewed as random variables
in [0,L—1].
e We consider the PDF of r, p,(r) and PDF of s, ps(s).

e From probability theory it follows that if p,(r) and T(r) are
known, and T(r) is continuous and differentiable over the
range we are working on, then

dr

ps(s) = pr(r) ds
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Histogram Processing

Histogram Equalization

o Let's consider the mapping s = T(R) = (L—1) [y pr(w)dw

(CDF of r).
o Leibnitz’s rule gives
9 _ 9T (1) & 1 po(w)aw] = (L~ 1))
1 1
@ Hence ps(s) = pr(r) 0| I-1T

@ We observe that ps(s) is a uniform PDF.

Pilir) Psls)
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Histogram Processing

Histogram Equalization

Discrete variables

e For discrete values p,(rx) = k=0,1,---,L—1.

Mk

M-N’
L-1

o Then s, = T(r) = (L—1)XK o pr(r}) = mif‘:o n;.

@ T, is called a histogram equalization or histogram

linearization transformation.

o The inverse transformation r, = T 1(sy) is used in the
histogram matching technique.
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Histogram Processing

Histogram Equalization
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Basics of Spatial Filtering

@ The name "filter" was adopted from the frequency domain
filtering (such as lowpass, highpass).

@ Spatial filtering may achieve similar results using masks or
kernels.

@ Spatial filters are more versatile than their frequency domain
counterparts because they can perform nonlinear operations.
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The Mechanics

@ A spatial filter consists of
© a neighborhood and
@ a predefined operation performed on the pixels of the
neighborhood.
@ Filtering creates a new pixel intensity at the center of the
neighborhood as an output.

@ Linear filters perform linear operations, and nonlinear filters
perform nonlinear operations.

} Mask .
Pixel at pu:ii1ioum Pixel at posm
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Basics of Spatial Filtering

The Mechanics

Linear spatial filtering of an
M x N image f with a mx n
filter w is given by

ZZ w(s,t)f(x+s,y+1t)

—a—p

where

X,y vary so that they span the
whole image plane,
m=2a+1and n=2b+1.
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Spatial Correlation and Convolution

@ Both are basic concepts in digital image processing.

@ Correlation is the process of moving a filter mask over an
image and computing the sum of products at each location as
above.

@ Convolution uses the same mechanics except that the filter is
first rotated by 180°.
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Spatial Correlation and Convolution

@ Correlation of filter w with function f:
w(x,y)of(x,y) =X, XPyw(s, t)f(x+s,y+1).

@ Convolution of filter w with function f:
w(x,y)* f(x,y) =X2, 5P pw(s, t)f (x—s,y —t).
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Spatial Correlation and Convolution in 1-D

(b)

(c)

(d)

(fy

[

Correlation

Origin =~ f w
Q0010000 12328
i
D0010000
12328

L Starting position alignment

| Zero padding
—
00000001 0000D0DO00
123128

0000000100000 000
12328
L position after one shift

000000100000 000
12328

L Position after four shifts

D000 00D0O1TO0O0O0O0DD0O0D0
12328
Final position -

Full correlation result
Oo00D823210000

Cropped correlation result

08232100

Convolution

~Origin f w rotated 180°

00010000 82321 (i)
00010000 (6]}

82321

0000001000000 O00 (k)

82321

00000001 00000000 (1)

823121

00000001 00000000 (m)
823121

00000001 00000000 (n)

82321
Full convolution result
000123280000 (o)}

Cropped convolution result

01232800

P}
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Basics of Spatial Filtering

Spatial Correlation and Convolution in 1-D

[10]12]14]1.6[18]20[22]24[26]28]3.0]

Filter kernel
| 0.3333 [ 0.3333 | 0.3333 |

(073331214 [16|1.8[20][22]24]26][28]1.9333]




Intensity Transforms and Spatial Filtering
Basics of Spatial Filtering

Spatial Correlation and Convolution in 2-D

Padded f
o~ Origin f(x,y)
1
w(x, ¥)
1 123
4 56
7809
(a} (b)
5 Initial position for w Full correlation result Cropped correlation result
17173
123
145 6l 987
i7_8 9l 654
987 321
1 6 5 4
321
(c) (d) (e)
w— Rotated w Full convolution result Cropped convolution result
o
I
16 5 4 123
221 456
123 7809
1 4 56
789

(f) (g) (h)
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Spatial Correlation and Convolution in 2-D

Signal Correlation Result
170 [ 240 | 10 | 80 [ 150 | Filter kernel 690 | 770 | 590 | 610 | 530
230 | 50 70 | 140 | 160 1111 790 | 1000 | 980 | 1160 | 950
40 60 | 130 | 200 | 220 111 600 | 990 | 1170 | 1350 | 960
100 | 120 | 190 | 210 | 30 111 610 | 1180 | 1360 | 1340 | 770
110 | 180 | 250 | 20 90 510 | 950 970 790 | 350
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Vector Representation of Linear Filtering

@ Another useful representation of the filtering process is
mn T
R=wizi +wozo+...+WmnZmn = Z Wiz = w' Z.
k=1

: vector with filter coefficients
corresponding image intensities under the filter mask.
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Generating Spatial Filter Masks

@ We select the filter coefficients to perform specific filtering
operations, using a sum of products.

@ For example, to implement a 3 x 3 averaging filter, we perform
R= %12?:1 z;. This is equivalent to filtering with a kernel with
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Generating Spatial Filter Masks

@ In other applications the filter approximates a 2-D function for
o _XT4yT .
example a Gaussian h(x,y) = 2”17e 202 with o: standard
deviation and x,y € Z .

@ To generate the filter we sample the function in the
neighborhood h(—1,-1),h(—1,0),...,h(1,0),h(1,1).

A

Figure: 7x7 Gaussian kernels with 6 = 0.5 and o = 1.0 (left to right).
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Generating Spatial Filter Masks

@ For nonlinear filters, we need to specify the kernel size and the
operation. For example, maximum, minimum, or median value
applied to the pixel intensities.

@ Nonlinear filters can be powerful for tasks such as image
enhancement and noise reduction.
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Smoothing Spatial Filters

@ These filters are used for blurring and noise reduction.
@ Blurring may precede object extraction.

@ Noise reduction can be achieved by blurring or nonlinear
filtering.
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Smoothing Linear Filters

@ The output of such filters is the average of pixel intensities in
the neighborhood of the mask. They are also called averaging
or lowpass filters.

@ ldea is to reduce the "sharp" transitions of intensity caused by
noise.

@ But blurring can smooth-out the image edges as a side-effect.
:5%‘_- == 4
‘W’m Wﬁ, o |

Figure: Original image, smoothed by Gaussian with o =1 and smoothed
by Gaussian with ¢ = 3.

v
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Smoothing Spatial Filters

Smoothing Linear Filters

Scenarios

O Averaging: R=1Y? | 7 also called a box filter.

- . XL LY pw(s)f(xtsy+t)
@ Weighted average: g(x,y) = Yo b w(sd)

1 21
Example: Coefficient weights in 1lTs 2 4 2 | reduce the
1 21

edge blurring effect.
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Smoothing Spatial Filters

Smoothing Linear Filters

Smoothing before segmentation

Frequently a blurring operation is followed by thresholding to
identify the main objects of an image.

Figure: Original image, smoothed image, and segmentation after
thresholding (left to right).




Intensity Transforms and Spatial Filtering
Smoothing Spatial Filters

Order Statistics (non-linear) filters

@ These filters rank the pixel intensities in the neighborhood of a
mask and select a percentile p.
o p=50%: median filter
o p=0%: minimum filter
o p=100%: maximum filter

o The Median filter can effectively reduce impulse noise.
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Smoothing Spatial Filters

Order Statistics (non-linear) filters

@ The Median filter can effectively reduce impulse noise.

Figure: Example of an image corrupted by salt and pepper noise,
result from smoothing filter, and result from median filter (left to
right).
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Smoothing Spatial Filters

Order Statistics (non-linear) filters

@ The Median filter can effectively reduce impulse noise.

Figure: Example of an image corrupted by salt and pepper noise, result
from smoothing filter, and result from median filter (left to right).
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Sharpening Spatial Filters

@ These filters aim to highlight transitions in intensity through
differentiation.

@ Typical sharpening filters are based on first- and second-order
derivatives.

@ Derivatives of digital functions are defined in terms of
differences
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Sharpening Spatial Filters

Requirements for 1,; Requirements for 2,4
derivative derivative
@ Zero in areas of constant © Zero in constant areas.
intensity. @ Nonzero at onset and end of
@ Non-zero at the onset of intensity step or ramp.
intensity step or ramp. © Zero along ramps of
© Non-zero along ramp. constant slope.
af 0%f

2= f(x+1) - f(x).

I 55 = f(x+1)+f(x—1)—2f(x).

ox
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Requirements for 14 and 2,4 derivatives

Intensity transition

fmem—m (@ @.-—-I—-—-
5 .‘LC(mslznl‘l /
o intensity Ramp S
z 4 " Step —
ERE - /
g - N '
= 2 = i
1 \(-)_-—-—-I—-—{‘j
0 *

pean [6elele[s[a[3]2]t[1[t[1]t]1[e[6]6 6 6]~
Istdervative 0 0-1-1-1-1-1 0 0 0 0 0 5 0 0 0 0
2ndderivative 0 01 0 0 0 0 1 0 0 0 0 5-5 0 0 0

s ®

.

3

2
2 1 A, P
£ 0f-@-@E—p-0-0 Ef—_:E!-E!--E!--E!7'3—- oo RC] x
= -1 "E[.‘_.,_._..__,._._...__,-" Zero crossing ;

-3 » Hrst derivative . !

—4 O Second derivative ;

-5l B
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Sharpening Spatial Filters

Ramp intensity profile example

Real case: CT scan cross-section

Figure: Intensity profile along the horizontal axis (in yellow) and gradient
magnitude (in blue).
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Using the 2,4 Derivative for Image Sharpening

@ Here we deal with isotropic filters that are rotation invariant.
@ Simplest isotropic derivative operator is the Laplacian
9%f  9°f

veF=2 1 o7
8x2+8y2
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Using the 2,4 Derivative for Image Sharpening

@ Here we deal with isotropic filters that are rotation invariant.
@ Simplest isotropic derivative operator is the Laplacian
9%f  9°f

veF=2 1 o7
8x2+8y2
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Using the 2,4 Derivative for Image Sharpening

2F  O3F
20 Y R
Vf—axz+8y2-
S F(xtLy) + Flx—1y)~2f(x.y)
ox2 T\ RY)TIX LY )
o2f
32 = Foy T+ flxy —1) - 2f(xy).

V2f =f(x+1,y)+f(x—1,y)+f(x,y+1)+Ff(x,y —1)—4f(x,y).
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Using the 2,4 Derivative for Image Sharpening

o V2f =
Fix+Ly)+f(x=Ly)+f(xy+1)+f(x,y —1) —4f(x,y).
0 1 0
e Corresponding filter kernel: | 1 —4 1
0 1 0
o Laplacian can be applied as g(x,y) = f(x,y) + c[V?f(x,y)].
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Using the 2,4 Derivative for Image Sharpening
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Using the 2,4 Derivative for Image Sharpening

50 100 15 200 250 200 30 400 40 500 5 100 10 20 20 300 30 40 450 500

Figure: Example of an original image, result of correlation with Laplacian
filter, image sharpening by subtracting the Laplacian image from the
original (left to right).
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Unsharp Masking and Highboost Filtering

© Blur the original image e
f(x,y) to produce f(x,y). ﬁ]

@ Subtract blurred image from
original (result is mask):

gmask(Xay_) = Trehe ek
f(x,y) N f(x,y). Unsharp mask

© Add mask to original image: ~7 L
g(x,y)=

f(ny)+k'gmask(X7Y)-

Sharpened signal
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Unsharp Masking and Highboost Filtering

@ For k=1, the above process is called unsharp masking.
@ For k> 1, the above process is called highboost filtering. J

Unsharp Masking

&
=
N
i
m § Gt

010
4 I
X1
rmi
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Unsharp Masking and Highboost Filtering

Figure: Example of an original image, Gaussian smoothed, it's g-mask
(top row, left to right), the result of unsharp masking, and the result of
highboost filtering with k = 1.5 (bottom row, left to right).
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@ Frequency Domain Interpretation
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@ Frequency Domain Filtering Steps

© Image Smoothing in the Frequency Domain
@ Ideal Lowpass Filters (ILPFs)
@ Gaussian Lowpass Filters (GLPFs)
@ Butterworth Lowpass Filters (BLPFs)
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Frequency Domain Interpretation

Use of Frequency Domain

@ The frequency domain does not display directly the visual
content, but it provides an alternate representation.
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@ The frequency domain does not display directly the visual
content, but it provides an alternate representation.

@ We usually visualize the frequency magnitude (spectrum) and
phase angle of DFT.
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Frequency Domain Interpretation

Use of Frequency Domain

@ The frequency domain does not display directly the visual
content, but it provides an alternate representation.

@ We usually visualize the frequency magnitude (spectrum) and
phase angle of DFT.

@ Visualization of the spectrum can indicate characteristics of
the image.
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Frequency Domain Interpretation

Use of Frequency Domain

@ The frequency domain does not display directly the visual
content, but it provides an alternate representation.

@ We usually visualize the frequency magnitude (spectrum) and
phase angle of DFT.

@ Visualization of the spectrum can indicate characteristics of
the image.

@ The frequency, defined as rate of change gives a global
information on the image content.
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Frequency Domain Interpretation

Use of Frequency Domain

@ Examples

e An image with large background areas of uniform intensities
will have few high frequency components.

e An image with sharp changes and many boundaries will
produce a spectrum with high frequency coefficients.

o Edge orientation is visible in spectrum.
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Frequency Domain Interpretation

Magnitude and Phase Information

Figure: SEM image example and its frequency spectrum. Observe the
lines in spectrum that correspond to orientation information and the high
frequency components.
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Basics of Filtering in the Frequency Domain

Frequency Domain Interpretation

Magnitude and Phase Information

Figure: Examples of an original image, its DFT magnitude, and its DFT
phase (left to right).
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Introduction to Frequency Domain Filtering

@ According to convolution theorem, to filter an image in
frequency domain we i) compute its DFT, ii) multiply with a
filter function and iii) apply the inverse DFT to the previous
result.
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How to Apply Filtering in Frequency Domain

Introduction to Frequency Domain Filtering

@ According to convolution theorem, to filter an image in
frequency domain we i) compute its DFT, ii) multiply with a
filter function and iii) apply the inverse DFT to the previous
result.

@ This is also expressed as:
g(va) = gil[F(ua V) : H(U, V)]7

where f(x,y) is an M x N image, F(u,v) = Z[f(x,y)] is the
DFT of f(x,y), H(u,v) is the filter transfer function, and
g(x,y) is the filtered image in the spatial domain.
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How to Apply Filtering in Frequency Domain

Introduction to Frequency Domain Filtering

@ According to convolution theorem, to filter an image in
frequency domain we i) compute its DFT, ii) multiply with a
filter function and iii) apply the inverse DFT to the previous
result.

@ This is also expressed as:
g(va) = gil[F(ua V) : H(U, V)]7

where f(x,y) is an M x N image, F(u,v) = Z[f(x,y)] is the
DFT of f(x,y), H(u,v) is the filter transfer function, and
g(x,y) is the filtered image in the spatial domain.

o Next, we discuss how to apply filtering in the frequency
domain and minimize inaccuracies in calculations.




Filtering in Frequency Domain
Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

The Filter Transfer Function

@ For the filter function H(u,v) we choose functions symmetric
at the DC frequency.
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How to Apply Filtering in Frequency Domain

The Filter Transfer Function

@ For the filter function H(u,v) we choose functions symmetric
at the DC frequency.

@ So, we need to center F(u,v) as well.
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How to Apply Filtering in Frequency Domain

The Filter Transfer Function

@ For the filter function H(u,v) we choose functions symmetric
at the DC frequency.

@ So, we need to center F(u,v) as well.

@ To do this, we use the translation property and multiply
f(x,y) by (—=1)**Y. Then F(u,v) is centered at (M/2,N/2).
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How to Apply Filtering in Frequency Domain

Filter Design

o After centering, we design the filter.

@ Usually the process involves the selection of frequencies that
we want to let pass, and another range that we want to block.
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How to Apply Filtering in Frequency Domain

Filter Design

o After centering, we design the filter.

@ Usually the process involves the selection of frequencies that
we want to let pass, and another range that we want to block.

@ Low frequencies correspond to the main regions of
approximately uniform intensities.
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How to Apply Filtering in Frequency Domain

Filter Design

o After centering, we design the filter.

@ Usually the process involves the selection of frequencies that
we want to let pass, and another range that we want to block.

@ Low frequencies correspond to the main regions of
approximately uniform intensities.

@ High frequencies correspond to sharp changes of intensity and
details. Image edges and noise are such examples.
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How to Apply Filtering in Frequency Domain

Filter Types

@ There are three basic types of filters: lowpass, highpass, and
bandpass.

@ Lowpass filtering is used to reduce the noise but also reduces
the sharpness of details.

@ Highpass filtering is used to enhance edges, corners, and other
details, but will also enhance the noise.

e Bandpass/bandreject filtering is used to remove systemic noise
patterns.
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Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

Examples Filter Types

Hu. vy
Hiu, v) {

Figure: Example of a lowpass, a highpass, with 0 DC coefficient, and a
highpass with non-zero DC coefficient filter transfer functions.
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How to Apply Filtering in Frequency Domain

Image Padding

@ Because of periodicity of DFT, if the image and filter are not
padded, then the convolution suffers from the wraparound
error.
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Filter Padding

@ In addition to the image, we need to pad the filter function
too.
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How to Apply Filtering in Frequency Domain

Filter Padding

@ In addition to the image, we need to pad the filter function
too.

@ Remember that padding is applied in the spatial domain, but
filter design is done in the frequency domain.
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How to Apply Filtering in Frequency Domain

Filter Padding

@ In addition to the image, we need to pad the filter function
too.

@ Remember that padding is applied in the spatial domain, but
filter design is done in the frequency domain.

@ How do we handle this?
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How to Apply Filtering in Frequency Domain

Filter Padding Strategy and Pitfall

@ First thought: create M x N filter in Fourier domain, apply
IDFT to filter, pad filter, then apply DFT.
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How to Apply Filtering in Frequency Domain

Filter Padding Strategy and Pitfall

@ First thought: create M x N filter in Fourier domain, apply
IDFT to filter, pad filter, then apply DFT.

@ The above process may introduce discontinuities at the
padding points, therefore infinite number of harmonics are
introduced (remember the box filter DFT).
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Filter Padding Strategy and Pitfall

@ First thought: create M x N filter in Fourier domain, apply
IDFT to filter, pad filter, then apply DFT.

@ The above process may introduce discontinuities at the
padding points, therefore infinite number of harmonics are
introduced (remember the box filter DFT).

@ This causes ringing effect in the frequency domain.
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How to Apply Filtering in Frequency Domain

Filter Padding Pitfall

@ To summarize, padding of ideal filters in the spatial domain
produces ringing effect in the frequency domain.

12 0.04

0.03
08—

5
061 0.02

041 0.01

0 128 s 0

0.03 —
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How to Apply Filtering in Frequency Domain

Filter Padding Solution

@ We saw that padding of ideal filters in the spatial domain
produces ringing effect in the frequency domain.

@ To reduce ringing, we can create the filter in frequency domain

with equal matrix size to the padded image. Then apply
filtering in the frequency domain.
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Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

Zero-Phase Shift

@ We usually modify the spectrum of an image for filtering, but
changes in phase angle should be avoided.
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How to Apply Filtering in Frequency Domain

Zero-Phase Shift

@ To avoid phase shift, we choose the filter transfer function to
be real.
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How to Apply Filtering in Frequency Domain

Zero-Phase Shift

@ To avoid phase shift, we choose the filter transfer function to
be real.

o Let the DFT of an image F(u,v) = R(u,v)+jl(u,v), and a
filter H(u,v).
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How to Apply Filtering in Frequency Domain

Zero-Phase Shift

@ To avoid phase shift, we choose the filter transfer function to
be real.

o Let the DFT of an image F(u,v) = R(u,v)+jl(u,v), and a
filter H(u,v).

@ Filtering then is computed by
F(u,v)H(u,v) = H(u,v)R(u,v)+jH(u,v)l(u,v).
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How to Apply Filtering in Frequency Domain

Zero-Phase Shift

@ To avoid phase shift, we choose the filter transfer function to
be real.

o Let the DFT of an image F(u,v) = R(u,v)+jl(u,v), and a
filter H(u,v).

@ Filtering then is computed by
F(u,v)H(u,v) = H(u,v)R(u,v)+jH(u,v)l(u,v).

@ It is easy to show that the phase of F(u,v)H(u,v) is equal to
the phase of F(u,v).
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How to Apply Filtering in Frequency Domain

Zero-Phase Shift

@ To avoid phase shift, we choose the filter transfer function to
be real.

o Let the DFT of an image F(u,v) = R(u,v)+jl(u,v), and a
filter H(u,v).

@ Filtering then is computed by
F(u,v)H(u,v) = H(u,v)R(u,v)+jH(u,v)l(u,v).

@ It is easy to show that the phase of F(u,v)H(u,v) is equal to
the phase of F(u,v).

@ These filters are called zero-phase-shift filters.
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Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

@ Using the previous results, we apply filtering in frequency
domain as follows
© Given image f(x,y) with size M x N, we append zeros to
image matrix to increase size to 2M x 2. Let padded image

be fo(x,y).
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Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

@ Using the previous results, we apply filtering in frequency
domain as follows
© Given image f(x,y) with size M x N, we append zeros to
image matrix to increase size to 2M x 2. Let padded image
be fo(x,y).

@ Multiply f(x,y) by (—=1)** to shift DC frequency to the
center.
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Frequency Domain Filtering Steps
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Filtering Process in the Frequency Domain

@ Using the previous results, we apply filtering in frequency
domain as follows

© Given image f(x,y) with size M x N, we append zeros to
image matrix to increase size to 2M x 2. Let padded image
be fo(x,y).
Multiply f(x,y) by (—=1)" to shift DC frequency to the
center.
Compute DFT: F(u,v) = Z[f(x,y)]
Build a real and symmetric 2M x 2N filter transfer function
H(u,v) in the frequency domain. Center function at (M, N).
Apply array multiplication: F(u,v)-H(u,v).
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Filtering Process in the Frequency Domain

@ Using the previous results, we apply filtering in frequency

domain as follows

© Given image f(x,y) with size M x N, we append zeros to

image matrix to increase size to 2M x 2. Let padded image
be fo(x,y).
Multiply f(x,y) by (—=1)" to shift DC frequency to the
center.
Compute DFT: F(u,v) = Z[f(x,y)]
Build a real and symmetric 2M x 2N filter transfer function
H(u,v) in the frequency domain. Center function at (M, N).
Apply array multiplication: F(u,v)-H(u,v).
@ Transform back to spatial domain:

go(x.¥) = Re{.# H[(F(u,v) - H(u, V)] }(~1)*".

© 00 ©
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Filtering Process in the Frequency Domain

@ Using the previous results, we apply filtering in frequency
domain as follows

© Given image f(x,y) with size M x N, we append zeros to
image matrix to increase size to 2M x 2. Let padded image
be fo(x,y).
Multiply f(x,y) by (—=1)" to shift DC frequency to the
center.
Compute DFT: F(u,v) = Z[f(x,y)]
Build a real and symmetric 2M x 2N filter transfer function
H(u,v) in the frequency domain. Center function at (M, N).
© Apply array multiplication: F(u,v)-H(u,v).
@ Transform back to spatial domain:
go(x,¥) = Re{.# H[(F(u,) - H(u, V)] }(~1)*".
@ Extract the top left quadrant of gy(x,y) to remove padding.
The result is the filtered image g(x,y).
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Image Smoothing in the Frequency Domain

@ Sharp intensity changes in the image (for example noise,
edges) corresond to high frequencies of the spectrum.

@ Smoothing of such details corresponds to attenuation of the
high frequency components.

@ This process is known as lowpass filtering.

@ Widely used lowpass filter types

o ldeal Lowpass Filters
o Butterworth Lowpass Filters
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Image Smoothing in the Frequency Domain

@ Sharp intensity changes in the image (for example noise,
edges) corresond to high frequencies of the spectrum.

@ Smoothing of such details corresponds to attenuation of the
high frequency components.

@ This process is known as lowpass filtering.

@ Widely used lowpass filter types

o ldeal Lowpass Filters
o Butterworth Lowpass Filters
o Gaussian Lowpass Filters
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@ These filters fully pass all frequencies within a radius Dy, and
fully attenuate all frequencies outside of this circle, denoted by
ILPF.
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Ideal Lowpass Filters

@ These filters fully pass all frequencies within a radius Dy, and
fully attenuate all frequencies outside of this circle, denoted by
ILPF.

@ Dy is called cut-off frequency.

@ The filter transfer function is

H(u.v) 1 if D(u,v) <Dy
u,v) = _
0 if D(u,v) > Dy.

D(u,v) =[(u—P/2)*+(v— Q/2)2]1/2, Dy: cut-off frequency,
(P,Q): padded image matrix size.
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Ideal Lowpass Filters

@ The term ideal is used to show full passing and full
attenuation.

@ It is a real and symmetric filter.

) L Hw
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|deal Lowpass Filter Design

@ To set Dy we can use power spectrum measurements P(u,v),
computed from the squared magnitude of spectrum

P(u,v) = | Z[f(x, )]
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|deal Lowpass Filter Design

@ To set Dy we can use power spectrum measurements P(u,v),
computed from the squared magnitude of spectrum
P(u,v) = | Z[f(x, )]

@ The total image power is P = 25:_& ZVQ;& P(u,v).
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|deal Lowpass Filter Design

@ To set Dy we can use power spectrum measurements P(u,v),
computed from the squared magnitude of spectrum
P(u,v) = | Z[f(x, )]

@ The total image power is P1 :Z ZQ 1P( v).

@ Then, a circle with radius Dy encloses a percent of power o
equal to a =100Y., Y, P(u,v)/Pt, with D(u,v) < Dy.
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Ideal Lowpass Filters (ILPFs)

|deal Lowpass Filtering Example
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Gaussian Filters

@ The Gaussian lowpass filter transfer function is defined as

H(u,v) = e~ D*(uv)/208

@ We can show that the IDFT of a Gaussian is also a Gaussian,
implying that a Gaussian filter does not cause ringing.
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Gaussian Lowpass Filters (GLPFs)

Gaussian Filtering Example

o Gaussian filtering
produces no ringing
effect.
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Butterworth Lowpass Filters

@ These filters can be seen as intermediate cases between the
Ideal and Gaussian lowpass filters.

@ The transfer function of a BLPF with order n is defined as

Hiu, vy Hiu, v)
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Butterworth Lowpass Filtering Example

@ As BLPF radius
increases, smoothing
reduces.

@ The spatial kernel

approaches an
impulse.
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Butterworth Lowpass Filtering Characteristics

@ In BLPF, ringing effect becomes more intense with increasing

order.
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© Frequency-Selective Filtering
@ Bandpass and Bandreject Filters
@ Notch Filters

© Implementation Topics
@ Separability of 2-D DFT
@ Using DFT for IDFT Computation
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@ Fine image detail corresponds to high frequencies.
@ Image sharpening can be achieved by highpass filtering.

o Highpass filtering attenuates low frequencies and retains high
frequencies.

@ We can simply obtain a highpass filter Hyp(u,v) as the
complementary of a lowpass filter H p(u,v):

Hup(u,v) =1—Hip(u,v).
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Image Sharpening in the Frequency Domain

@ Fine image detail corresponds to high frequencies.
@ Image sharpening can be achieved by highpass filtering.

o Highpass filtering attenuates low frequencies and retains high
frequencies.

@ We can simply obtain a highpass filter Hyp(u,v) as the
complementary of a lowpass filter H p(u,v):

Hup(u,v) =1—Hip(u,v).

@ We can design highpass filters in the frequency domain such as
Ideal highpass, Gaussian highpass, Butterworth highpass,
Laplacian highpass, Unsharp masking, and homomorphic
filters.
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Butterworth Highpass Filters

@ A Butterworth highpass filter transfer function is defined as

1

1+ [D(%?v)rn‘

Hw, v) Hiu, v)
¥ 10
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Butterworth Highpass Filtering Example

@ As LBPF radius increases, sharpening decreases.

@ The spatial kernel approaches an impulse.
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Frequency-Selective Filtering in the Frequency Domain

o Frequently, we are interested in filters that attenuate or pass a
specific range of frequencies.

@ Bandreject and bandpass filters attenuate or pass specific
bands of frequencies.

@ We can design bandpass filters based on previous filter
definitions.

@ Notch filters pass or attenuate small regions of the frequency
rectangle.
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|deal Bandpass Filters

@ ldeal bandpass filter:

H(u.v) 1 if Dy—W/2<D(u,v) < Do+ W/2
u,v)= )
0 otherwise .

o D(u,v) = [(u—P/2)%+(v—Q/2)]", Do: radial center of
the band, W: width of band (or bandwidth).
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Butterworth Bandpass Filters

@ Butterworth bandpass filter:

1

1+ [717(5&33502 } o

H(u,v)=

o D(u,v) = [(u—P/2)%+(v—Q/2)]"", Do: radial center of
the band, W: width of band (or bandwidth).
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Gaussian Bandpass Filters

o Gaussian bandpass filter:

H(u,v) = e~ [D(uv)2=D31*/(DW)?

o D(u,v)=[(u—P/2)*+(v— 0/2)2]1/2, Dy: radial center of
the band, W: width of band (or bandwidth).
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Bandreject Filters

@ A bandreject filter can be defined as the complementary of a
bandpass filter:
Hgr =1— Hpgp.
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@ Notch filters pass or attenuate signal frequencies in a
neighborhood of a specific frequency.




Filtering in Frequency Domain
Frequency-Selective Filtering
Notch Filters

Notch Filters

@ Notch filters pass or attenuate signal frequencies in a
neighborhood of a specific frequency.

o To preserve zero-phase shift property, notch filters have to be
symmetric.
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Notch Filters

@ Notch filters pass or attenuate signal frequencies in a
neighborhood of a specific frequency.

o To preserve zero-phase shift property, notch filters have to be
symmetric.

@ Usually we design them as products of highpass filters with
symmetric centers

Q
HNR = H Hk(u, v)H,k(u, V)
k=1

k(u,v) are highpass filters with center frequencies
and (u_g,v_k) respectively.

oH( v),H_
(Ukvvk)




Filtering in Frequency Domain
Frequency-Selective Filtering
Notch Filters

Butterworth Notch Reject Filters

@ These are defined by:

Q 1 1
Hyve =[] :

2n 2n
- D, D,
=14 [Dk(‘lfv)] 1+ [m?ﬁ,v)]

o Di(u,v) = [(u—P/2— u ) +(v—Q/2— v )"

D_y(,v) = [(u=P/2+ w2 +(v—Q/2+ v )3
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Notch Pass Filters

@ A notch pass filter can be defined as the complementary of a
notch reject filter
Hnp =1 — Hpg.
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Notch Reject Filtering Example

@ Image noise forming a
Moiré pattern.

o Magnitude spectrum
of the original image.

@ Butterworth notch
reject filter matching
the noise pattern.

o Filtering removes
noise.
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Forward 2-D DFT

o Forward 2-D DFT

M-1N-1

Flun)= & X flcy)e 70

x=0 y=
u=0,1,...,M—1,v=0,1,....N—1.
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Separable 2-D DFT

@ DFT kernel is separable, therefore

M-1N-1 o oy
Fluv)= ¥ X flxy)e #mi)e 22
x=0 y=0
M-1 N-1
=Y 2 Y F(x,y)e 2HH)

xX= y=0

M-1
= Z e 277G F(x, v).

X=

o

o
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Separable DFT stages

@ We apply 1-D Fourier transform applied to rows yielding
F(x,v) that has N coefficients for each row.
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@ We yield F(u,v) by applying Fourier transform to the columns
of F(x,v).
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Separable 2-D DFT

Separable DFT stages

@ We apply 1-D Fourier transform applied to rows yielding
F(x,v) that has N coefficients for each row.

@ We yield F(u,v) by applying Fourier transform to the columns
of F(x,v).

@ This property is used for fast implementations of DFT.
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Using DFT for IDFT Computation

@ Based on the 2-D IDFT definition we have that

1 M—-1N-1

Fxoy) =1 X, X Fluv)elm i)
u=0 v=0
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Using DFT for IDFT Computation

@ Based on the 2-D IDFT definition we have that

M-1N-1

ZZFuve’z’rW w)

uOv

@ Now we take the conjugate and solve for f(x,y)

1 M-1N— i2 (xu+YV)
F(0y) = o F*(u,v)e P2l
MN u=0 v=0
M—-1N-1 o
MNf*(x,y) = Y Fr(u,v)e J2m(i+w)
u=0 v=0
MNf*(x,y) = Z[F*(u,v)]
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Preliminary Concepts

Fourier Series

@ A function f(t) of a continuous variable t with period T can
be expressed as the sum of sines and cosines multiplied with
appropriate coefficients.

@ This sum is known as Fourier expansion of f(t) and is given by

f(t) = i chel T

n—=-—oo

@ The coefficients ¢, are given by:

Cn f(t)e 7 tdt.
T/T/2 (t)
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Preliminary Concepts

Impulses and Sifting Property

Unit Impulse

@ A unit impulse 6(t) of a continuous variable t at t =0 is

defined as:
é(t):{oo ift=0

0 otherwise

with

/_O;S(t)dt _1
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Sifting Property

e For a function f(t) that is continuous at t =0, we have that

/_W £(£)8(t)dt = £(0)

@ In general, for an impulse at an arbitrary point t = t; we have
that

[ F(£)8(t — to)dt = F(to)
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Impulses and Sifting Property

o Impulse:
1 ift=
ORE S
0 otherwise
with -
Z o(x)=1.

@ Sifting property:

@ In general,
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Impulses and Sifting Property

Discrete Impulse at xp

8(x — xy)
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Impulses and Sifting Property

Discrete Case, Impulse Train

@ Impulse train is the sum of infinitely many periodic impulses
with period AT:

SAT(t) = i 5(1‘— nAT)

n—=-—oo

Sarlt)

<= =3AT —2AT AT 0O AT 2ZAT  3AT ---
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Preliminary Concepts

The Fourier Transform of Functions of One Continuous
Variable

@ The Fourier transform of function f(t) denoted by #{f(t)} is
given by
FifO = [ fp)e T

o F{f(t)} = F(n).
o Inverse Transform: f(t) =.Z Y F(u)} = [~ F(u)e/?™tdu.

@ We can use Euler’'s formula to write the forward transform as

F(u) = /7 Z F(t)[cos(2mpt) — jsin(2ut)]dt.




Filtering in the Frequency Domain

Preliminary Concepts

Fourier Transform of a Pulse Function

- _ w2 _
Fy = [ foyemide— [ 7 ety
o —w)2

_ —A [ 7J27rut]W/2 —A 7j7ruW_ej7wW]
J2mp - j2mu
2'2“[ SN _J”“W] = ;sin(nu W)
J

:AWsm(n,uW)

TuW
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Preliminary Concepts

Fourier Transform of a Pulse Function

@ Because the Fourier transform F(u) of a function f(t) is
complex in general, often times we use its magnitude |F ()|
for display purposes.

@ The magnitude of Fourier transform |F(u)| is called Fourier
spectrum or frequency spectrum.

@ For the case of a pulse function we have that

sin(zu W)

= AW
|F (1) T
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Fourier Transform of a Pulse Function

Rectangular Pulse, Fourier Transform, and Fourier Spectrum

fin Flp) |F ()
AW AW
A
1-11-'
Wiz 0 W2 e n\f{/\U v U\Y ’ FORN .
! = W 2W - W A 1w
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Fourier Transform of a Unit Impulse

Impulse at origin Impulse at ty

F(”):/ o(Fjep e F(u):/ 5(t — to)e 2™t dt
:/ e—j2nut5(t)dt :/ e—j271:/4t5(t_t0)dt
= e—j271"u0 — e—j27t[,lt0
=1. = cos(2muty) — jsin (2w ty)

v v
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Fourier Transform of an Impulse Train

Fourier series expansion

@ Let an impulse train sa7(t) with period AT,
sat(t) =Y . O6(t—nAT).
@ Because it is periodic, it can be represented by Fourier series:

> -27rnt AT/2 27tnt
sat(t) = cne! AT ¢, = Sat(t)e a7 dt
AT( ) n:Z_oo n Cn AT AT AT(
@ For one period we have that,
AT 2
Ch = / / %tdt: L
AT AT/2 AT

@ The Fourier series becomes : sp7(t) = ﬁZ‘;":,wefATt.
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Fourier Transform of an Impulse Train

Fourier Transform of series

o Now, we find .Z{sa7(t)} =S(u).

@ Using the previous result we have that

Sw) =z L &4

n—-—oco
]. > -27n
= —— Y it
AT &= { }
1 & n

= Enz o(u— E)}-

——o00

@ Therefore, the Fourier transform of an impulse train is an
impulse train with period reciprocal to the original one.
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Preliminary Concepts

Convolution

@ The convolution of two functions f(t) and h(t) is given by

00

F(£) % h(t) = / F()h(t —1)dt

—o0

@ The Fourier transform of the convolution is
ﬁ{f(t)*h(t)}:/_w [ : f(r)h(t—r)dr] e I2mhit gy
— [ () [/w h(t — r)eﬁ”“tdt] dt
= [ @ [Hwe 7] de

/,L)/ f(t)e /2™7dt

—oo

p)F(u)

—_ o~
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Preliminary Concepts

Convolution

@ Therefore we have that
F{f(t)xh(t)} = F{f(t)}F{h(t)}
= H(1)F(u)

@ This result tells us the convolution in the spatial domain is
equivalent to the product in the frequency domain.

Convolution Theorem

@ The previous result can be symbolized as:

F(£) x h(t) < H(u)F(1).
@ We can also show that f(t)h(t) < H(u)* F(u).

@ The above two expressions form the Convolution Theorem.
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Fourier Transform of Sampled Functions

Sampling

@ The analog signal acquired by imaging sensors is converted to
digital by the processes of sampling and quantization.

@ Let f(t) be a continuous signal that we want to sample at
uniform intervals AT.

@ The sampling process can be represented by multiplication of
f(t) with an equally spaced impulse train. So the sampled
function f is given by:

f(t) = f(t)saT(t Z f(t)8(t—nAT)

@ The value f; at each sampling point k is given by:
fu = 7. F(t)6(t— kAT)dt = f(kAT), for k=1,2,...
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Fourier Transform of Sampled Functions

Sampling

The Sampling Process

Continuous function,
impulse train, sampled
function, and sampled
values (top to bottom).

[

(1)

©=2AT AT

S(f)sar

)

LU

T

)

o =2AT AT

) AT 2AT -

kAT)

t

t
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Fourier Transform of Sampled Functions

Fourier Transform of Sampled Functions

o The Fourier transform of the sampled function f(t) is
Fu) = 7{f(t)}

= <g.{f-(l’)SAT}
= F(u)*S(u)
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Fourier Transform of Sampled Functions

Fourier Transform of Sampled Functions

F(u)=F )*5(u)

—/ F(t)S

_/ F(t [n_ZwATB - A7) |97
1 00 oo

_E 7°°F(T) [n;ma(ufm_) dT
1 & o n

_ Mn;w/_wF(r)S(u—T—M)dT
1 = n
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Fourier Transform of Sampled Functions

Fourier Transform of Sampled Functions

@ The previous result shows that the Fourier transform of a
sampled function F(u) is a sequence of repeated copies of

F(u)-
@ These copies are spaced ﬁ apart.
o Because F(11) is continuous, F(it) is also continuous.

@ The quantity ﬁ is the sampling rate.
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Fourier Transform of Sampled Functions

The Sampling Theorem

@ We showed that the Fourier transform of a sampled function is
a periodic sequence of the Fourier transforms of the
continuous function that are spaced ﬁ apart.

@ We can reconstruct the original signal if we can isolate one full
period.

o This is guaranted when ﬁ > 2lmax, Where lmay is the
maximum frequency.

Theorem (Nyquist Theorem)

A continuous, band-limited function can be recovered completely by
its samples, if the samples are acquired at a rate that exceeds twice
the highest frequency coefficient of the function.
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Fourier Transform of Sampled Functions

The Sampling Theorem

he Sampling Process

Fourier Transform of a
band-limited function,
transform of the
corresponding sampled
function with
over-sampling, critical
sampling, and
under-sampling (top to
bottom).

Flp)
o
P
—2/AT 1/AT o 1/AT AT
Fw)
—2/AT —1/AT o 1/AT 2/AT
Fl)

~3/AT -2/AT -1/AT 0 UAT  2/AT  3AT
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Fourier Transform of Sampled Functions

The Sampling Theorem

Original Signal Recovery )

o Ideal lowpass filter: H(u) = e N
AT —Hmax < K< Umax BTt ’ wr
0 otherwise
o Multiply: F(u) = H(u)F(u) o :
@ Inverse Fourier Transform: .
f(t) = |5, F(u)e*™ du L0 :
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Fourier Transform of Sampled Functions

Aliasing

@ The Nyquist theorem
determines the sampling rate
for complete signal recovery
to be ﬁ > 2fdmax-

@ When the rate is smaller
than required, successive
periods will overlap.

@ The recovered function will
be corrupted by the
frequency aliasing effect.

Flp) = H(u) Flw)

K 0 P
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Fourier Transform of Sampled Functions

Aliasing

Reducing Aliasing Effect

@ Aliasing effect is almost unavoidable, because when we limit
the duration of a function, we introduce an infinite number of
frequency components.

@ A way to reduce this effect is by smoothing the input signal to
attenuate the higher frequences, a process known as
anti-aliasing. This process has to be applied before sampling.
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@ The Discrete Fourier Transform (DFT) of One Variable
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Outline

@ The Discrete Fourier Transform (DFT) of One Variable

© Extension to Functions of Two Variables



Filtering in the Frequency Domain
The Discrete Fourier Transform (DFT) of One Variable

Fourier Transform of Sampled Function

@ We showed before that the Fourier transform of the sampled
function f(t) is

Fu) = 7{f(t)}

= <g.{f-(l’)SAT}
= F(u)+S(w)
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The Discrete Fourier Transform (DFT) of One Variable

Fourier Transform of Sampled Function

o We also showed that the transform F () of a sampled, and
band-limited function f(t) with range (—oo,0) is given by

e But this expression does not include 7(t).

o Next, we will express F(u) in terms of 7(t).
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The Discrete Fourier Transform (DFT) of One Variable

Obtaining the Discrete Fourier Transform

o Continuous Fourier transform of (t)
Fuy = [ oyt

:/m Y F(£)5(t—nAT)e 2t

n=—co

-y /w F(£)8(t — nAT)e 72ty

_ Z fe—j27mnAT
= n

n—=-—co

o Although f, is discrete, F(it) is continuous and periodic with
period 1/AT.

o We need one period to characterize F(u).
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The Discrete Fourier Transform (DFT) of One Variable

Obtaining the Discrete Fourier Transform

o We assume that we sample F(u) between 0 and 1/AT using
M points.

@ The sampling frequencies would then be u = /2= for
m=0,1,...,M—1.

@ From the previous result we have that

(=)

Fm: Z f-nefj27mnAT

n=-—oo
M—-1 ) .

_ Z fne—12anAT
n=0
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The Discrete Fourier Transform (DFT) of One Variable

Discrete Fourier Transform Pair

@ The expression

M1 o
Fmn=Y fe /4" m=01,.,M-1.
n=0
is the Discrete Fourier Transform (DFT).

@ This is a transformation from a set {f,} of M samples to
another set {F,} of M samples.

@ The Inverse Discrete Fourier Transform is defined as

1 M-1 o
fo=—"Y Fme™" m=0,1,...M—1.
Mm:0
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The Discrete Fourier Transform (DFT) of One Variable

Discrete Fourier Transform Pair

@ Using functional notation we can write the DFT pair as
M—1 .
F(U) — Z f(X)e*_]27TWX,u = 0717”.’ M_ 1
x=0

and
1 M-1

fx)=—= Y F(u)e* " x=0,1,...M—1.
u=0
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The Discrete Fourier Transform (DFT) of One Variable

Discrete Fourier Transform Considerations

@ Forward and inverse DFT are periodic.
F(u) = F(u+ kM), f(x) = f(x+ kM)

@ Convolution

M-1

f(x)*h(x)= Z f(m)h(x —m)

m=0

e The convolution is periodic, also referred to as circular
convolution.
e The convolution theorem holds for discrete variables.
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The Discrete Fourier Transform (DFT) of One Variable

Relation between the Sampling and Frequency Intervals

@ Let f(t) be a function sampled at M points that are AT units
apart.

@ The produced sampled signal {f(x)} has duration
T=M-AT.

@ As we showed before, the spacing in the frequency domain is

_ 1 1

OU= paT = T

@ The range of the frequency spectrum is Q = M-ﬁ = ﬁ.

@ Observe the inverse relationships between the sampling and
frequency intervals.
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Extension to Functions of Two Variables

2-D Impulse and Sifting Property

Impulse Definition

@ A unit impulse 8(t,z) of continuous variables t and z is

defined as:
o ft=z=0
8(t,z) = e
0 otherwise

/m /m 5(t,2)dtdz = 1.

with
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Extension to Functions of Two Variables

2-D Impulse and Sifting Property

Sifting Property

e For a function f(t,z) that is continuous at t =0, z=0, we
have that

/:O/_‘: f(t,z)d(t,z)dtdz = £(0,0)

@ In general, for an impulse at an arbitrary point (ty,2z0) we have
that

/w /w F(t,2)8(t — to, 2 — 20)dtdz = F(t0, 20)
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Extension to Functions of Two Variables

Impulses and Sifting Property

o Impulse:
1 ifx=y=0
o(x,y) =
bey) {O otherwise

with

Z Z o(x,y)=1.

X=—00 y=—00
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Extension to Functions of Two Variables

Impulses and Sifting Property

@ Sifting property:

oo oo

Y Y flxy)8(x.y)=1(0,0)

X=—00 y=—00

@ In general,

oo oo

Y ) f(xy)8(x—x0.y —y0) = f(x0.¥0)

X=—00 y=—00
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Extension to Functions of Two Variables

2-D Continuous Fourier Transform Pair

@ The Fourier transform of a continuous function f(t,z) is
FLF(t,2)} = F(u,v) = 1 : 1 " F(t,2)e PRIV ey
@ Inverse Transform:
f(t.2) =7 HFu) = [ [ Fay)e? e duay.

@ We can use Euler’s formula to write the forward transform as

Flu,v) = [ Z [ Z F(t, 2)[cos(2m(wt + vz)) — jsin(2m(pt + v2))]dtdz
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Extension to Functions of Two Variables

2-D Continuous Fourier Transform Pair

Fourier Transform of a 2-D Box

o Function: F(u,v) = [T/ [#12 Ae=i2n(ut+vz) gz,

~T/2)-z)2
e Spectrum: |F(u,v)|=ATZ Sinéﬁ‘;—-r) S"‘,ﬁﬁﬁz)

firz)
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

@ We first define the 2-D impulse train:

SATAZ(t z Z Z 5 t—mAT)5(z—nAZ)

m——oo N——o0

where AT and AZ are sampling intervals in t and z.

Saraz(l. )

] L

AT

Figure: 2-D impulse train.
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

@ We multiply our signal with the impulse train to produce the
sampled function.

f(t7z) = f(t,Z)SATAz(t,Z)

= Y Y f(t.2)8(t—mAT)S(z—nAZ)

m——oo N——o0

@ The question is how to recover f(t,z) after the sampling
process from f(t,z).
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

Band-limited 2-D Function

@ A function f(t,z) is band-limited if its Fourier transform
F(u,Vv) satisfies the following:

|F(u,v)| =0, for |1] > tUmax and |V| > Vmax

Theorem (2-D Sampling Theorem)

A continuous, band-limited function f(t,z) can be recovered with
no error after sampling with intervals AT and AZ if

1 1
E > Q”max and E > 2Vmax
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

2-D Over- and Under-sampling

Footprint of an
ideal lowpass
I/r_tht:xll'illcr
W RE4PEN
| |
| . |
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Extension to Functions of Two Variables

Aliasing in Images

@ As in 1-D case, aliasing happens when the conditions of
sampling theorem are violated.
@ The condition of a band-limited function is violated when we
limit the duration of a function in original space.
e Some aliasing is present in all digital images as in sampled 1-D
functions.
@ Another source of aliasing is the sampling interval.

e Two types: spatial aliasing, or temporal aliasing.

e Spatial aliasing is caused by undersampling in spatial domain.

e Temporal aliasing is caused by undersampling in temporal
domain.
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Extension to Functions of Two Variables

Aliasing in Images

Anti-aliasing Solutions

@ Aliasing can be reduced by de-focusing the sensed scene before
it is digitized.

o Post-digitization "anti-aliasing" filters blur the image to reduce
the aliasing caused by resampling.

@ Some digital cameras have true anti-aliasing filters, either in
the lens, or on sensor’s surface.
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Extension to Functions of Two Variables

Aliasing in Images

Aliasing and Interpolation

@ Aliasing can be caused when we resample by pixel replication,
mainly during image shrinking.

@ This is because we increase the sampling interval by skipping
rows and columns.

@ One solution is to smooth the image before interpolation.

@ Other manifestations of aliasing are jaggies (blocky edges) and
Moire patterns.
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Extension to Functions of Two Variables

Aliasing in Images

Figure: Original image, under- and over-sampled back to original size
using pixel-replication with aliasing artifacts, use of blurring before
undersampling reduces aliasing (left to right).
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Extension to Functions of Two Variables

2-D Discrete Fourier Transform and Its Inverse

2-D Discrete Fourier Transform (DFT) Pair
e Forward 2-D DFT

M-1N-1 v
Fluv)=Y Y f(x,y)e 2+ )

x=0 y=0
u=0,1,..,M—1,v=0,1,...,N—1.

@ Inverse 2-D DFT

M—1N-1 (4
f(x,y)= MNZZF(uvef

u=0 v=

x=01,..M—1,y=0,1,...,M—1.
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2-D Discrete Fourier Transform Properties

Outline

@ Properties of 2-D Discrete Fourier Transform
@ Periodicity
@ Translation and Rotation
@ Separability
@ Symmetry
@ Linearity and Multiplication
@ Average Value
@ Magnitude and Phase of DFT
@ 2-D Convolution Theorem
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Properties of 2-D Discrete Fourier Transform

Periodicity

Sampling and frequency intervals

o Let f(x,y) be a sampled image with M x N samples in
dimensions t and z.

o Let AT, AZ be the sampling intervals in t and z respectively.

@ Then the frequency intervals are given by

1
A -
“EMAT
and ]
Av =
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Properties of 2-D Discrete Fourier Transform

Periodicity

Periodicity

@ The 2-D DFT and its inverse are infinitely periodic in v and v
F(u,v)=F(u+kiM,v)

(u,v+ ko)
(u+ k1M,V+k2N)

F
F

f(x,y)=f(x+kiM,y)
=f(x,y + ko V)
= f(X—l— klM,y—l- kzN)
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Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Translation

Translation in spatial domain

F(x — X0,y — y0) & F(u,v)e 727+

Translation in frequency domain

f(x,y)ejh(%"’%) < F(u—up,v—vp)
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Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Rotation

e Rotating f(x,y) by angle 6y rotates F(u,v) by angle 6y
f(r,6+90) = F(CO,¢+90).

where x =rcos0, y =rsin@ and u= wcos¢, v=@sin@.
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Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Using Shifting and Periodicity Properties

@ For visualization and filtering purposes we may shift the
spectrum by half a period.

o It follows from the translation properties that
yup.

f(x,y) &2 Cit +') & F(u—up,v — wo).
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Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Using Shifting and Periodicity Properties

o If we set (up,vp) = (M/2,N/2) we have that

xM /2

F(x,y)e2 T 5 & F(u—M/2,v — N/2)
f(x,y)e™ ) & F(u—M/2,v—N/2)
FOx,y) (=)0 o F(u—M/2,v — N/2)

@ In this way, the coefficients are shifted so that F(0,0) appears
at the (M/2,N/2).
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Properties of 2-D Discrete Fourier Transform

Separability

Forward 2-D DFT

o Forward 2-D DFT

M—-1N-1

F(u, Z Z f(x,y)e —i2n( i+ )

x=0 y=
u=0,1,...,M—1,v=0,1,....N—1.
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Properties of 2-D Discrete Fourier Transform

Separability

Separable DFT

@ DFT kernel is separable, therefore

Mil Nfl H ux K vy
Fluv)= ¥ X flxy)e #mi)e 22
x=0 y=0
M-1 N-1
= Y e )Y f(x,y)e 2R
y=0

M-1
= Z e 277G F(x, v).

X=

o

X=

o
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Properties of 2-D Discrete Fourier Transform

Separability

Separable DFT

Separable DFT stages

© We apply 1-D Fourier transform applied to rows yielding
F(x,v) that has N coefficients for each row.

@ We yield F(u,v) by applying Fourier transform to the columns
of F(x,v).

This property is used for fast implementations of DFT.
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Properties of 2-D Discrete Fourier Transform

Symmetry

Symmetry Basics

@ Any real or complex function w(x,y) can be written as the
sum of an even and odd part, we(x,y) and wy(x,y)

w(x,y) = we(x,y) + wo(x,y).

@ Even (or symmetric) and odd (or antisymmetric) parts are
defined as

We(Xv}/):

W(va)+2/(*xﬁy) and wo(x,y) = W(XJ)*Q/(*Xﬁy)




2-D Discrete Fourier Transform Properties
Properties of 2-D Discrete Fourier Transform

Symmetry

Symmetry Basics

o It follows that
We(x,y) = we(—x,—y) and wo(x,y) = —wo(—x,—y).
@ Because we deal with positive indices the above definitions
become
we(x,y) = we(M —x,M —y) and
Wo(x,y) = —wo(N —x,N —y).
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Properties of 2-D Discrete Fourier Transform

Symmetry

Symmetry Properties for DFT

@ If f(x,y) is real then its Fourier transform is conjugate
symmetric
F*(u7 V) = F(—u,—V)

e If f(x,y) is imaginary then its Fourier transform is conjugate
antisymmetric
F*(u,v)=—F(—u,—v)

e f(x,y) is real and even < F(u,v) is real and even.

e f(x,y) is real and odd < F(u,v) is imaginary and odd.
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Properties of 2-D Discrete Fourier Transform

Symmetry

More Symmetry Properties

Spatial Domain’ Frequency Domain’
1) flx,y)real < F'(u.v) = F(—u, —v)
2) fix,y) imaginary <> F'{—u, —v) = —F(u, v)
3) flx.y)real < Riw.v)even: f(u, v)odd
4) flx,y) imaginary <> Riu, v) odd:; I{u, v) even
5) fl—x.—y)real F'(u. v) complex
6) f(—x,—y)complex < F{—u, —v) complex
7) f'(x,y)complex <  F'(—u — v) complex
8) f(x,y)realand even < F(u, v) real and even
9) flx.y)realand odd < F(u, v) imaginary and odd
10) fix,y) imaginary and even <>  F(u, v) imaginary and even
11) f(x,y) imaginary and odd < F(u, v) real and odd
12) flx.y) complex and even <«  F(u. v) complex and even
13) flx.y)complex and odd <« Flu, v) complex and odd
Recall that x, y, u, and v are discrefe (integer) variables, with x and « in the range [0, M — 1], and y. and
v in the range [0, N — 1]. To say that a complex function is even means that its real and imaginary parts

are even, and similarly for an odd complex function




2-D Discrete Fourier Transform Properties

Properties of 2-D Discrete Fourier Transform

Linearity and Multiplication

Linearity and Multiplication

Flaf(x,y)+ bg(x,y)] = aF[f(x,y)] + bF[g(x,y)]

Multiplication does not hold

Flf(x,y)-g(x,y)]1 # FIf(x,y)]- Flg(x,y)]
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Properties of 2-D Discrete Fourier Transform

Average Value

The DC Coefficient

@ When we set (u,v) =(0,0), then F(u,v) becomes

M-1N-1

Zfoy)

x=0 y=

= MNf(x,y).

where f(x,y) is the mean of f(x,y).
o Therefore, |F(0,0)] = MN|f(x,y)|.

@ Because the frequency indices are zero, F(0,0) is also called
the DC coefficient.
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Properties of 2-D Discrete Fourier Transform

Average Value

The DC Coefficient

@ The term F(0,0) is usually the largest component of the
spectrum by a large margin.

@ To compress the range of Fourier coefficients, we usually apply
log transform to display the Fourier spectrum.

@ Another step is to shift the spectrum so that the DC
coefficient appears at (M/2,N/2).
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Properties of 2-D Discrete Fourier Transform
Magnitude and Phase of DFT

Magnitude and Phase of DFT

2-D DFT in polar form

@ The Fourier transform of a function is complex and can be
written as

F(u,v) = |F(u,v)|e).,

@ The magnitude |F(u,v)| is called the Fourier spectrum or
frequency spectrum calculated by

F(u,v)| = [Re(F(u,v))2+Im(F(u, v))? Y2

@ The phase angle ¢(u,v) is given by

‘P(u, v) = arctan {%} )
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Properties of 2-D Discrete Fourier Transform
Magnitude and Phase of DFT

Power Spectrum

@ The power spectrum |F(u,v)|? is given by
IF(u, )P = [Re(F(u,v))? + Im(F(u,v))?].
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Properties of 2-D Discrete Fourier Transform
Magnitude and Phase of DFT

Magnitude and Phase Visualization

| |
| 4

Figure: Original image, its spectrum (top row, left to right) its centered
spectrum, and display of centered spectrum after log intensity transform
(bottom row, left to right).
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Properties of 2-D Discrete Fourier Transform
Magnitude and Phase of DFT

Magnitude and Phase Information

Figure: Examples of an original image, its DFT magnitude, and its DFT
phase (left to right).
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Properties of 2-D Discrete Fourier Transform
Magnitude and Phase of DFT

Magnitude and Phase Information

Figure: Original image, its phase, reconstructed with phase only (top
row, left to right), reconstructed with magnitude only, reconstructed
using phase from face image and magnitude from rectangle image,
reconstructed using phase from rectangle image and magnitude from face
image (bottom row, left to right).
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution

@ We can extend the findings for the 1-D DFT to 2-D.

@ Circular convolution is defined by:

M—1N-1
f(x,y)*h(x,y)= Z Zf(m n)h(x —m,y —n)

m=0 n=

where x=0,....M—1and y=0,...., N —1.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem

@ We saw that the convolution theorem is applicable to discrete
variables as well.

@ This can be expressed as
f(Xay) * h(X7y) ~ F(”a V) : H(U, V)

and

f(x,y) -h(x,y) < F(u,v)*H(u,v)
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem Application

@ For an image M and a spatial filter S, we can compute F xS
as follows:
© Pad S with 0s so that it is the same size as M. Denote padded
ShbyS.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem Application

@ For an image M and a spatial filter S, we can compute F xS
as follows:
© Pad S with 0s so that it is the same size as M. Denote padded
ShbyS.
© Compute DFT's of M and S:

F (M) and Z(S).




2-D Discrete Fourier Transform Properties
Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem Application

@ For an image M and a spatial filter S, we can compute F xS
as follows:

© Pad S with 0s so that it is the same size as M. Denote padded
ShbyS.
@ Compute DFT's of M and S:
F (M) and Z(S).
© Multiply .#(M) and Z(S'):

F(M)-Z(S).
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem Application

@ For an image M and a spatial filter S, we can compute F xS
as follows:

© Pad S with 0s so that it is the same size as M. Denote padded
SbyS.
@ Compute DFT's of M and S:
F (M) and Z(S).
© Multiply .#(M) and Z(S'):
F(M)-Z(5).
@ Compute inverse DFT of .Z(M) and .#(5'):

FYFZ(M)- Z(S)).
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Wraparound Error

@ The process we

described corresponds 1 [

to non-periodic . - :‘, n
functions (left
column). T1. ahnn

h(—m) h(-m)

@ But we must consider )
the signal periodicity e L

assumption in DFT
definition and use.

. b s
@ Then the convolution P

1200

produces erroneous N
results, caused by the v
wraparound error. )
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Adressing Wraparound Error

@ We can avoid the wraparound error by appending 0s to both
functions (zero padding) so they have length P such that

P>A+B-1.

@ Because many DFT implementations are designed for even
matrix sizes, we can pick P as the smallest even number
satisfying the above condition.
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2-D Convolution Theorem

Adressing Wraparound Error: Frequency Leakage

o If the signals are not zero at the end of sampling interval, then
zero padding introduces a discontinuity represented by infinite
frequencies in Fourier domain.




2-D Discrete Fourier Transform Properties
Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Adressing Wraparound Error: Frequency Leakage

o If the signals are not zero at the end of sampling interval, then
zero padding introduces a discontinuity represented by infinite
frequencies in Fourier domain.

@ This effect is called frequency leakage that appears as blocky
effect on images.




2-D Discrete Fourier Transform Properties
Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Reducing Frequency Leakage

@ Frequency leakage can be reduced by multiplying the sampled
function by a function that reduces smoothly to zero at the
two ends of sampling interval.
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Reducing Frequency Leakage

@ Frequency leakage can be reduced by multiplying the sampled
function by a function that reduces smoothly to zero at the

two ends of sampling interval.
@ The above approach is called windowing or apodizing.




2-D Discrete Fourier Transform Properties
Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Reducing Frequency Leakage

@ Frequency leakage can be reduced by multiplying the sampled
function by a function that reduces smoothly to zero at the
two ends of sampling interval.

@ The above approach is called windowing or apodizing.

e Frequently, we use a Gaussian function for apodization.




2-D Discrete Fourier Transform Properties
Properties of 2-D Discrete Fourier Transform
2-D Convolution Theorem

2-D DFT Definitions

Name

Expression(s)

Name

Expression(s)

1) Discrete Fourier
iransform (DFT)
of f(x.y)

2) Inverse discrete
Fourier transform
(IDFT) of F(u, v)

3) Polar representation

4) Spectrum

5) Phase angle
6) Power spectrum

7) Average value

(ux/M+2y/N)

Moan
Fluo)= 3 3 flxye

Fu,v) = | Flu, o)l

y b i
IF (e, 0)| = [R¥u,v) + 1. )]
R = Real(F): I = Imag(F)

I(u,v)
Riu, v)

P(u,v) = |F(u,v)|?

$(u, v) = tan

_ 1w .
Flxy) —2 ;H_m ¥ =3 FO.0)

8) Periodicity (k; and
k are integers)

9) Convolution

10) Correlation

11) Separability

12) Obtaining the inverse
Fourier transform
using a forward

transform algorithm.

F(u.v) = Flu + kiM.w) = Fu.v + koN)
= Fu + kM. v+ kyN)

Flry) = flx + kM. y) = flr.y + koN)

= flx+ kM, y + koN)
Mot N1
flr ) khixy) = 3 3 flm.mhlx — m.y = n)

M1 v-
flatehey) = 3 3 fmn)hx + m.y + n)

The 2-D DFT can be computed by computing 1-D
DFT transforms along the rows (columns) of the
image, followed by 1-D transforms along the columns
(rows) of the result. See Section 4.11.1.

-
MNF () = 5, 3 F (u, w)e et
Thisequation indicates that inputting F*(u, v) into an
algorithm that computes the forward transform
(right side of above equation) yields MNJ (x, s
Taking the complex conjugate and dividing by MN
gives the desired inverse. See Section 4.11.2.




2-D Discrete Fourier Transform Properti
Properties of 2-D Discrete Fourier Ti
2-D Convolution Theorem

2-D DFT Pairs

Name DFT Pairs
7) Correlation flr y)ich(x, y) & F'w, v) Hiw, v)
theorem' F(x yh(x, y) & Flu,v) % H(u,v)
%) Discreteunit  5Cx, y) e 1
Name DFT Pairs impulse
sin(rrua) sin(arob) )

1) Symmetry Sec Table 4.1 9) Rectangle rectla, b] e ab——m ——smeira )

properties (zua)  (wvb)
2) Linearity afi(x.y) + bf(x. y) & aFy(u. v) + bFyu, v) 10) Sine sin(2mur + 2mtyy) =
3) Translation Flx, y) ePmsIM N o5 Flu — uy v — vg) 500+ Mut, v+ N = 50— Mo = Ny

(general) Fx = X0,y — yo) e Fll, w)e RriessM o) 2 -

. 2 day

4) Translation Fe¥) (=) e Flu — Mj2,0 — Nj2 1) Cosine cos(Ratigx + Dmthy) e

to center of Flx = M2y — Nf2) ¢ F(u.v)(~1)*** 1 s )

the frequency 5[s(u + Mug, v+ Nug) + 8(u — Mug, v — Nug)

Tectangle, ‘The following Fourier transform pairs are derivable only for continuous variables,

(M2, Ni2) denoted as before by £ and z for spatial variables and by  and v for frequency
5) Rotation £, + 8> Flwn g + 00) variables. These results can be used for DFT work by sampling the continuous forms.

¥=rcosf y=rsind u=-wcose v=wsing 12) Differentiation (ir) (’1) 1(6,2) <= ()™ 2w F G )

6) Convolution F(x,¥) % h(x, y) & Flu, v)H(u, v) (The expressions **/ A%

theorem ; ) ; on the right P - &7, 2) i

1 Six h(x, y) & Flu,v) % Hw.v) sssume that e e ([ 2mp)"Flp, v): & (j2av)"Fp, v)
y F(+00, +00) = 0)

13) Gaussian * (A is a constant)

*Assumes that the functions have been extended by 7ero padding. Convolution and correlation are asso.
cialive, commutative, and distributive.
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Introduction to Image Restoration
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@ Image Restoration Basics
@ Modeling Image Degradation and Restoration
@ Noise Models
@ Addressing Noise for Restoration
@ Addressing Noise for Restoration - Spatial Filtering
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@ Goals of both image enhancement and restoration are to
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Image Restoration Basics

Image Restoration

@ Goals of both image enhancement and restoration are to
improve the image quality.
@ Enhancement techniques are mostly heuristic and subjective.

@ Restoration attempts to recover an image that has been
degraded by using a priori knowledge of degradation process.

@ Restoration techniques first model the degradation process,
then apply the inverse process to recover original image.
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Modeling Image Degradation and Restoration

Modeling Degradation and Restoration Processes

@ Here we assume that an image f(x,y) undergoes a
degradation process modeled by function h(x,y) followed by
corruption by additive noise n(x,y).

g(x,y) = h(x,y)*f(x,y)+n(x,y).
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Modeling Image Degradation and Restoration

Modeling Degradation and Restoration Processes

@ Here we assume that an image f(x,y) undergoes a
degradation process modeled by function h(x,y) followed by
corruption by additive noise n(x,y).

g(x,y) = h(x,y)*f(x,y) +n(x,y).
@ In the frequency domain this becomes

G(u,v)=H(u,v)F(u,v)+ N(u,v).

N Degradation I ( glx. y) Restorati L .
flr.yi= = function estora ,'_Un > flx,y)
H filter(s)

N(]\\L
n(x. ¥)

DEGRADATION

RESTORATION ‘
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@ Noise may occur during acquisition and transmission.
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Noise Models

@ Noise may occur during acquisition and transmission.

@ During acquisition with a CCD camera, noise level is affected
by light levels and sensor temperature.

@ Noise can corrupt a signal during transmission as well,
especially if the signal is in analog form.
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Spatial and Frequency Noise Properties

@ It is useful to model the characteristics of noise in spatial and
frequency domain.
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Spatial and Frequency Noise Properties

@ It is useful to model the characteristics of noise in spatial and
frequency domain.
@ Here we assume the noise is

e independent of spatial coordinates (not true for periodic noise)
and
e that it is not correlated with the image.
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Noise Probability Density Functions

@ Most types of noise are modeled by a probability density
function.
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Noise Probability Density Functions

@ Most types of noise are modeled by a probability density
function.

@ The noise models are typically chosen based on some
understanding of the noise source.
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@ The pdfis
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Noise Models

Gaussian Noise

@ The pdfis

@ Gaussian noise is caused by

e electronic circuit noise
e sensor noise due to poor illumination and/or high temperature.

Gaussian

0.607

Viro \
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Rayleigh Noise

@ The pdf is given by

Z:a+\/”Tb, 62:717(44_”).
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Rayleigh Noise

@ The pdf is given by

z—a+\/ G b(4 ”)

e Typically used to characterlze noise in range imaging

Rayleigh
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Erlang (gamma) Noise

@ The pdf is given by
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Erlang (gamma) Noise

@ The pdf is given by

.abz[”1 —az

2z (e z>0
p(z)={ BTt

0 z<0

Z=b/a, 6®=b/2%.

@ Typically used to characterize noise in laser imaging.

(b—1)/a




Introduction to Image Restoration
Image Restoration Basics
Noise Models

Exponential Noise

@ The pdf is given by
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Exponential Noise

@ The pdf is given by

z7=1/a, 62=1/a°
o Typically used to characterize noise in laser imaging.
plz)

@\ Exponential
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Uniform Noise

@ The pdf is given by

L a<z<b

b
0 otherwise
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Uniform Noise

@ The pdf is given by

1
p(z) = 4 B a<z<b
0 otherwise
= athb 2 _ (b-a)®
z=24t/a o2 = L5

@ Least used in practice.
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Uniform Noise

@ The pdf is given by

5 a<z<b

0 otherwise

= _ atb 2 _ (b—a)?

z=%7/a 0% ="

@ Least used in practice.

@ Useful as basis for random number generators.

plz)
1
b—a

Uniform
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Impulse (Salt and Pepper) Noise

@ The pdf is given by

P,
p(z) = { P,

Z=a

z=0>b
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Impulse (Salt and Pepper) Noise

@ The pdf is given by

() P, z=a
Z) =
P P, z—b

e Common when quick transients (eg, faulty switching) occur
during imaging.

Impulse
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Noise Model Examples

MM

Gaussian Rayleigh Gamma

Figure: Images and histograms after adding Gaussian, Rayleigh and
Gamma noise to a synthetic image.




Introduction to Image Restoration
Image Restoration Basics
Noise Models

Noise Model Examples

Exponential Uniform Salt & Pepper

Figure: Images and histograms after adding Exponential, Uniform and
Impulse to a synthetic image.
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Periodic Noise

@ This noise is usually caused by some electromechanical
interference.
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Image Restoration Basics
Noise Models

Periodic Noise

@ This noise is usually caused by some electromechanical
interference.

@ The spectrum of this noise type will show symmetric peaks at
the noise frequencies.
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Noise Parameter Estimation

o Estimate the parameters of noise pdf from small patches of
reasonably constant background intensity.
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Image Restoration Basics
Noise Models

Noise Parameter Estimation

o Estimate the parameters of noise pdf from small patches of
reasonably constant background intensity.

e For impulse noise, estimate probability of black/white pixels.

v

o
ot

S
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Restoration in the Presence of Noise only

@ If noise can be estimated, it can be subtracted from the input
image




Introduction to Image Restoration
Image Restoration Basics

Addressing Noise for Restoration

Restoration in the Presence of Noise only

@ If noise can be estimated, it can be subtracted from the input
image
o We follow 2 steps
@ estimate n(x,y) A
Q s(xy)=f(x,y)+n(x,y) = f(x,y) =g(x,y) — fi(x,y).
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Restoration in the Presence of Noise only

@ If noise can be estimated, it can be subtracted from the input
image
o We follow 2 steps
@ estimate n(x,y) A
Q g(x,y) =f(x,y)+n(x,y) = f(xy) = glx,y) - fi(x,y).
@ It is very difficult to subtract noise when it is independent from
the spatial coordinates.
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Restoration in the Presence of Noise only

@ If noise can not be estimated, filtering methods are used to
Suppress noise.
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noise.
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Restoration in the Presence of Noise only

@ If noise can not be estimated, filtering methods are used to
Suppress noise.

o Filtering is better suited for reducing additive and random
noise.

@ The main types of filters for denoising are

o Mean filters (arithmetic, geometric, harmonic, etc)
o Order statistics filters (median, min, max)
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Restoration in the Presence of Noise only

@ If noise can not be estimated, filtering methods are used to
Suppress noise.
o Filtering is better suited for reducing additive and random
noise.
@ The main types of filters for denoising are
o Mean filters (arithmetic, geometric, harmonic, etc)

o Order statistics filters (median, min, max)
e Frequency-domain filters.
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Addressing Noise for Restoration - Spatial Filtering

Arithmetic Mean Filter

@ The filtering operation is given by

fy)=— ¥ als).

mn s tyes,,
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Addressing Noise for Restoration - Spatial Filtering

Arithmetic Mean Filter

@ The filtering operation is given by

fy)=— ¥ als).

mn s tyes,,

@ It applies blurring that reduces noise, but removes image detail
as well.
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Addressing Noise for Restoration - Spatial Filtering

Geometric Mean Filter

@ The filtering operation is given by

Fooy)=| I s&(s:t)

(s,t)eSxy
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Addressing Noise for Restoration - Spatial Filtering

Geometric Mean Filter

@ The filtering operation is given by

mn

Fooy)=| I s&(s:t)

(s,t)eSxy

@ This filter applies smoothing too, and removes less image
detail than the arithmetic mean.
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Addressing Noise for Restoration - Spatial Filtering

Harmonic Mean Filter

@ The filtering process is given by

N mn
f(x,y)= o
(s»t)esx.y g(S,t)
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Addressing Noise for Restoration - Spatial Filtering

Harmonic Mean Filter

@ The filtering process is given by

N mn
f(x,y)= o
(s%t)esx.y g(S,t)

@ The harmonic filter works well for salt noise but cannot
address pepper noise. It works well for Gaussian noise too.
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Addressing Noise for Restoration - Spatial Filtering

Contraharmonic Mean Filter

@ The filtering operation is given by

R s s,t)QF!
Al ) = Z( £)ESxy g(s,t)

Z(s,t)esx,y g(S, t)Q
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Addressing Noise for Restoration - Spatial Filtering

Contraharmonic Mean Filter

@ The filtering operation is given by

Y (s.t)es,, 8(s, 1)

F(x,y) =
( y) Z(s,t)esx,yg(sat)Q

@ @ > 0 pepper noise.
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Addressing Noise for Restoration - Spatial Filtering

Contraharmonic Mean Filter

@ The filtering operation is given by

Y (s.t)es,, 8(s, 1)

F(x,y) =
( y) Z(s,t)esx,yg(sat)Q

@ @ > 0 pepper noise.
@ @ < 0 salt noise.
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Addressing Noise for Restoration - Spatial Filtering

Contraharmonic Mean Filter

The filtering operation is given by

Y (s.t)es,, 8(s, 1)
Z(s,t)esx,y g(S, t)Q

f(X,y):

Q@ > 0 pepper noise.
Q < 0 salt noise.

(]

Q@ = 0 becomes an arithmetic mean filter.
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Addressing Noise for Restoration - Spatial Filtering

Arithmetic and Geometric Mean Filter Example

@ The original
image, image
corrupted by
Gaussian noise,
filtered by
arithmetic
mean, filtered
by geometric
mean filter in
clockwise
order.
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Image Restoration Basics
Addressing Noise for Restoration - Spatial Filtering

Contraharmonic Mean Filter Example

@ Image corrupted by
pepper noise, image
corrupted by salt
noise, pepper noise
filtered by
contraharmonic filter
of order 1.5, salt noise
filtered by
contraharmonic filter
with @ =—1.5in
clockwise order.
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Addressing Noise for Restoration - Spatial Filtering

Order-statistic Filters

@ Order-statistic filters are nonlinear spatial filters.
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Addressing Noise for Restoration - Spatial Filtering

Order-statistic Filters

@ Order-statistic filters are nonlinear spatial filters.

@ Their response is based on ordering (ranking) of the pixels
contained in an area covered by the filter kernel.
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Addressing Noise for Restoration - Spatial Filtering

Median Filter

@ The filtering operation is given by

N

f(x,y) = median(s yes, , {8(s, 1)}

@ It produces less blurring than the arithmetic filters.
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Addressing Noise for Restoration - Spatial Filtering

Max and Min Filters

@ The max filtering operation is given by

A

f(X7y) = MaX(s t)es,, {g(57 t)}
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Addressing Noise for Restoration - Spatial Filtering

Max and Min Filters

@ The max filtering operation is given by

A

f(X7y) = MaX(s t)es,, {g(57 t)}

@ The max filter is good for pepper noise.
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Max and Min Filters

The max filtering operation is given by

A

f(X7y) = MaX(s t)es,, {g(57 t)}

The max filter is good for pepper noise.

The min filtering operation is given by

f(Xay) = mi"(s,t)esx,y {g(57 t)}

The min filter is good for salt noise.
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Midpoint Filter

@ This filtering operation is given by

Fx,y) =1/2|maxs pes,, {8(s, 1)} + min(s es,, {&(s, t)}] :
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Midpoint Filter

@ This filtering operation is given by

Fx,y) =1/2|maxs pes,, {8(s, 1)} + min(s es,, {&(s, t)}] :

@ This can be seen as an averaging-order statistics hybrid.
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Addressing Noise for Restoration - Spatial Filtering

Midpoint Filter

@ This filtering operation is given by

Fx,y) =1/2|maxs pes,, {8(s, 1)} + min(s es,, {&(s, t)}] :

@ This can be seen as an averaging-order statistics hybrid.

o |t works best for Gaussian or uniform noise.
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Alpha-trimmed Mean Filter

@ Good for multiple types of noise such as Gaussian noise, and
salt-and-pepper noise.
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Alpha-trimmed Mean Filter

@ Good for multiple types of noise such as Gaussian noise, and
salt-and-pepper noise.
@ Assume an m x n neighborhood

@ Disregard d/2 lowest and d/2 highest values.
© Average the remaining values.
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@ Assume an m x n neighborhood
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© Average the remaining values.

@ d =0, arithmetic mean
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Addressing Noise for Restoration - Spatial Filtering

Alpha-trimmed Mean Filter

@ Good for multiple types of noise such as Gaussian noise, and
salt-and-pepper noise.
@ Assume an m x n neighborhood

@ Disregard d/2 lowest and d/2 highest values.
© Average the remaining values.

@ d =0, arithmetic mean

@ d = mn—1 median.
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Addressing Noise for Restoration - Spatial Filtering

Median Filter Example

@ Image
corrupted by
salt and pepper
noise, salt and
pepper noise
filtered by
median filter,
second pass of
median filter,
third pass of
median filter in
clockwise
order.
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Image Restoration Basics
Addressing Noise for Restoration - Spatial Filtering

Max and Min Filter Example

o Max filter
applied to
pepper noise
(left), and min
filter applied to
salt noise

(right).

i il




Introduction to Image Restoration

Image Restoration Basics
Addressing Noise for Restoration - Spatial Filtering

Mean, Median, Alpha-trimmed Mean Filter Examples

@ Image corrupted by uniform
noise, additional salt and
pepper noise, arithmetic
mean filter output,
geometric mean filter
output, median filter output,
alpha-trimmed mean filter
output (left to right and top
to bottom).
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Adaptive Filters

@ They use non-fixed (i.e., adaptive) parameters
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Adaptive Filters

@ They use non-fixed (i.e., adaptive) parameters

o Typically, adaptive filters have superior performance compared
to non-adaptive filters.
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Adaptive Filters

@ They use non-fixed (i.e., adaptive) parameters

o Typically, adaptive filters have superior performance compared
to non-adaptive filters.

@ But they have higher computational complexity.
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Addressing Noise for Restoration - Spatial Filtering

Adaptive Median Filter

@ Size of filtered region is not fixed.
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Addressing Noise for Restoration - Spatial Filtering

Adaptive Median Filter

@ Size of filtered region is not fixed.

@ lts operation depends on the statistical characteristics of the
pixel values inside the filtered region.
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Addressing Noise for Restoration - Spatial Filtering

Adaptive Median Filter Example

@ Image corrupted by salt and pepper noise, median filter
output, adaptive median filter output (left to right).
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Restoring Image Degradation

Outline

@ Image Restoration to address Degradation
@ Estimating the Degradation
@ Inverse Filtering
@ Wiener Filtering
@ Constrained Least Squares (CLS) Filtering
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Image Restoration to address Degradation

Estimating the Degradation

Degradation Models

@ We assume the following degradation and noise corruption
scenario
G(u,v)=H(u,v)F(u,v)+ N(u,v).
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Estimating the Degradation

Degradation Models

@ We assume the following degradation and noise corruption
scenario
G(u,v)=H(u,v)F(u,v)+ N(u,v).

@ H can be modeled mathematically, for example to simulate
atmospheric turbulence and motion.
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Image Restoration to address Degradation

Estimating the Degradation

Degradation Because of Atmospheric Turbulence

@ The atmospheric
turbulence can be
modeled as

H(u,v) = A G i

@ From left to right and
top to bottom: original
image, degraded with
k =
0.0025,0.001,0.00025.




Restoring Image Degradation
Image Restoration to address Degradation

Estimating the Degradation

Degradation Because of Linear Motion

o Consider the case of camera/object planar motion.
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Estimating the Degradation

Degradation Because of Linear Motion

o Consider the case of camera/object planar motion.

@ The coordinates change over time, that is xp(t) and yp(t).
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@ Let T be the exposure time, which is the time interval for
which the camera shutter is open.
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@ Let T be the exposure time, which is the time interval for
which the camera shutter is open.

@ The acquired image g(x,y) is

.
glx,y)= /0 f(x—xo(t),y — yo(t))dt.
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Estimating the Degradation

Degradation Because of Linear Motion

@ Let T be the exposure time, which is the time interval for
which the camera shutter is open.

@ The acquired image g(x,y) is

.
glx,y)= /0 f(x—xo(t),y — yo(t))dt.

o After applying Fourier transform and using the Convolution
theorem G(u,v) = F(u,v)H(u,v) we can show that

Huv)= [ e2mtooldtonoge
0
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Degradation Because of Linear Motion

@ When xo(t) = at/ T and yp(t) =0
T .
e ) :/ o—72m(uxo(t)+vyo(t))dt
0

_ /T e—J2n(uat/T) 44
0

T .
= — sin(wua)e 27(ua),
Tua
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Degradation Because of Linear Motion

@ When xo(t) =at/T and yo(t) =bt/T

T ,
; —j2n(ua+vb)
H(u,v) = 2(uat vb) sin(m(ua+ vb))e .
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Degradation Because of Linear Motion Example

Digital

Processing

"
? _ I
[

Figure: Degradation because of linear motion with a=b=0.1 and
T=1.
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Inverse Filtering

@ The degradation model is

G(u,v)=H(u,v)F(u,v)+ N(u,v).
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Inverse Filtering

@ The degradation model is
G(u,v) = H(u,v)F(u,v)+ N(u,v).
@ Straightforward solution is direct inverse filtering

I:_(u, v) = ZEZ::;




Restoring Image Degradation
Image Restoration to address Degradation

Inverse Filtering

Inverse Filtering

@ The degradation model is
G(u,v) = H(u,v)F(u,v)+ N(u,v).
@ Straightforward solution is direct inverse filtering

Fu,v)= ZEZ::;

@ This is applied as an array operation.
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Inverse Filtering - Practical Issues

e Continuing the previous analysis we have

G(u,v) _ H(u,v)F(u,v)  N(u,v)
H(u,v) H(u,v) H(u,v)
N(u,v)
H(u,v)

If(u, v)=F(u,v)+
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e Continuing the previous analysis we have

G(u,v) _ H(u,v)F(u,v)  N(u,v)
H(u,v) H(u,v) H(u,v)
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If(u, v)=F(u,v)+

@ This approach has two problems:
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Inverse Filtering

Inverse Filtering - Practical Issues

e Continuing the previous analysis we have

G(u,v)  H(u,v)F(u,v) N(u,v)

H(u,v)  H(u,v) H(u,v)
F(u,v) = F(u,v)+ ZEZ’ :;

@ This approach has two problems:

e We cannot restore the image completely when we don’t know
N(u,v).
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Inverse Filtering - Practical Issues

e Continuing the previous analysis we have

G(u,v) _ H(u,v)F(u,v)  N(u,v)
H(u,v) H(u,v) H(u,v)
N(u,v)
H(u,v)

If(u, v)=F(u,v)+

@ This approach has two problems:
e We cannot restore the image completely when we don’t know
N(u,v).
o For small values of H(u,v) the noise term may dominate the
estimate adding large error.
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Inverse Filtering - Practical Issues

e Continuing the previous analysis we have

G(u,v) _ H(u,v)F(u,v) n N(u,v)
H(u,v) H(u,v) H(u,v)
N(u,v)
H(u,v)

If(u, v)=F(u,v)+

@ This approach has two problems:
e We cannot restore the image completely when we don’t know
N(u,v).
o For small values of H(u,v) the noise term may dominate the

estimate adding large error.

o One solution for this is to restrict analysis within a radius from
the DC frequency to ensure that H(u,v) will have large
enough magnitude.
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Inverse Filtering Example

@ Result of inverse filtering
using full frequency
range, and cut-off radius
of 40, 70, and 85 (left to
right and top to bottom).

@ Observe that the using
the full range or an
excessive radius will
amplify the noise term
and produce
unacceptable restoration.

~ ’
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Wiener Filtering

@ In contrast to inverse filtering, Wiener utilizes statistical
properties of the noise.
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Wiener Filtering

@ In contrast to inverse filtering, Wiener utilizes statistical
properties of the noise.

@ This method considers image and noise to be random variables
and finds the estimate f that minimizes the mean squared error

e = E{(f - F)?}.
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Wiener Filtering

@ In contrast to inverse filtering, Wiener utilizes statistical
properties of the noise.

@ This method considers image and noise to be random variables
and finds the estimate f that minimizes the mean squared error

e = E{(f - F)?}.

@ Working hypotheses:

e image and noise are uncorrelated
o either one has zero mean
o intensity levels in f are a linear function of intensity levels of f.
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Wiener Filtering

o Wiener showed that the error function minimum in frequency

domain is
F(u,v)= /f/(u7 L (uz’ V)L (uv)*
(V) |H(w, v)]? + 2424
where

H(u,v): degradation transfer function

G(u,v): transformed degraded image

Sn(u,v) = [N(u,v)|?: power spectrum of the noise
S¢(u,v) = |F(u,v)[%: power spectrum of the ideal image.
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Wiener Filtering

@ In general, we do not know the power spectra of the ideal
image or the noise.
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Wiener Filtering

@ In general, we do not know the power spectra of the ideal
image or the noise.

@ Then we approximate F(u,v) as

2 _ G(u,v) |H(u, v)|?
Fluv) = 5N TH IR K

where

K: constant specified by user

H(u,v): degradation transfer function

G(u,v): transformed degraded image

Sn(u,v) = [N(u,v)|?: power spectrum of the noise
Se(u,v) = |F(u,v)[?: power spectrum of the ideal image.
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Wiener Filtering

Error Measures from Power Spectra

@ Signal to Noise Ratio, SNR

M Ty F(u )P
Yulo Eozo IN(u,v)P?

SNR =
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Wiener Filtering

Error Measures from Power Spectra

@ Signal to Noise Ratio, SNR
M RN F(u, )P
Yoo L0og [N (u, v)[?

SNR =

@ Mean Square Error, MSE

1 M-1nN-1 . )
MSE = - 3, Y [Fy) = fOoy)),

u=0 v=0
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Wiener Filtering

Error Measures from Power Spectra

@ Signal to Noise Ratio, SNR

M Ty F(u )P
Yulo Eozo IN(u,v)P?

SNR =

@ Mean Square Error, MSE

1 M—-1N-1 .
u=0 v=0

@ Signal to Noise Ratio (spatial domain), SNR
R FOxy)?
Y ) (FOay) = F(x,))

SNR
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Wiener Filtering

Wiener Filtering Example

o Left column:
motion blur and
additive noise
corruption.

o Middle column:
inverse filtering
output.

@ Right column:
Wiener filtering
output.
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Constrained Least Squares Filtering Motivation

o Wiener filter

o Requires knowledge of noise and signal power spectra.
e Optimal averaged images.
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Constrained Least Squares Filtering Motivation

o Wiener filter

o Requires knowledge of noise and signal power spectra.
e Optimal averaged images.

e CLS
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Constrained Least Squares Filtering Motivation

@ Wiener filter
o Requires knowledge of noise and signal power spectra.
e Optimal averaged images.

e CLS

e Requires knowing only the mean and standard deviation of the
noise.
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Constrained Least Squares Filtering Motivation

@ Wiener filter
o Requires knowledge of noise and signal power spectra.
e Optimal averaged images.
o CLS
e Requires knowing only the mean and standard deviation of the
noise.
e Optimal for all images.
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Constrained Least Squares Filtering

@ Our initial assumption was that an image f(x,y) undergoes a
degradation process modeled by function h(x,y) followed by
corruption by additive noise n(x,y).

g(x,y) = h(x,y)*f(x,y) +n(x,y).




Restoring Image Degradation
Image Restoration to address Degradation
Constrained Least Squares (CLS) Filtering

Constrained Least Squares Filtering

@ Our initial assumption was that an image f(x,y) undergoes a
degradation process modeled by function h(x,y) followed by
corruption by additive noise n(x,y).

g(x,y) = h(x,y)*f(x,y) +n(x,y).

@ By applying convolution in spatial domain we get

M—1N-1
ge(x,y) = Z Zf m,n)he(x —m,y —n)+ ne(x,y)
m=0 n=
Xx=0,1, M—1
y:Oalv aN_l
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Expressing Degradation using Matrix Equations

o If we consider the 1-D case the extended convolution can be

expressed by
g=Hf+n

where
g:Mx1,H:MxM, f:Mx1 n: Mx1.
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Expressing Degradation using Matrix Equations

@ In the 2-D case the extended convolution can be expressed by
g=Hf+n

where

g:-MNx1, H: MNxMN, f: MNx1, n: MN x 1.
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Expressing Degradation using Matrix Equations

@ In the 2-D case the extended convolution can be expressed by
g=Hf+n

where

g:-MNx1, H: MNxMN, f: MNx1, n: MN x 1.

@ Question: can we use matrix operations to estimate f?
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@ Question: can we use matrix operations to estimate f?
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@ Question: can we use matrix operations to estimate f?
@ Answer: this is not simple because of




Restoring Image Degradation
Image Restoration to address Degradation
Constrained Least Squares (CLS) Filtering

Expressing Degradation using Matrix Equations

@ Question: can we use matrix operations to estimate f?
@ Answer: this is not simple because of
e very high dimensional vectors
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Expressing Degradation using Matrix Equations

@ Question: can we use matrix operations to estimate f?
@ Answer: this is not simple because of

e very high dimensional vectors
e need to invert H
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Expressing Degradation using Matrix Equations

@ Question: can we use matrix operations to estimate f?
@ Answer: this is not simple because of

e very high dimensional vectors
e need to invert H
e solution being sensitive to noise.
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Constrained Least Squares Filtering Regularization

@ We can deal with sensitivity to noise by applying smoothness
constraint to our solution, that is by minimizing

M—1N—
= Z Z‘ sz(xy

subject to
lg — HF[|? = [|n||*.
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Constrained Least Squares Filtering Solution

@ We can show that the solution is
A G H 2
By = S0 AR
H(u,v) [H(u,v)[?+vIP(u,v)|
where
P(u,v) is the Fourier transform of Laplacian kernel
0 1 0
px,y)=11 —4 1
0 1 0
Y is the only parameter, and we get inverse filtering for y= 0.
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Constrained Least Squares Filtering Solution

@ We can show that the solution is
A G H 2
By = S8 @R
H(w, ) T )+ 1P (V)
where
P(u,v) is the Fourier transform of Laplacian kernel
0 1 0
px,y)=11 —4 1
0 1 0
Y is the only parameter, and we get inverse filtering for y= 0.
o We also note that ||n||? is a monotonic function of 7.
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Constrained Least Squares Filtering Algorithm

© Define degradation model

g=Hf+n.
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Constrained Least Squares Filtering Algorithm

© Define degradation model
g=Hf+n.
@ Calculate residual error

r =g — HfF.
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Constrained Least Squares Filtering Algorithm

© Define degradation model
g=Hf+n.
@ Calculate residual error
r =g — HfF.

© Adjust y and recompute f.
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Constrained Least Squares Filtering Algorithm

© Define degradation model
g=Hf+n.
@ Calculate residual error
r =g — HfF.

© Adjust y and recompute f.
Q If

Iel2 = [Infl* <

return,
otherwise go to step 2.
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Constrained Least Squares Filtering Algorithm

@ In the previous algorithm we need to find n.
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Constrained Least Squares Filtering Algorithm

@ In the previous algorithm we need to find n.

@ We can show that n = MN[u2 + 62]. where u, is the noise
mean, and o, is the noise standard deviation.
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Constrained Least Squares Filtering Example

@ First column:
motion blur and
additive noise
corruption.

@ Second column:
inverse filtering
output.

@ Third column:
Wiener filtering
output.

@ Fourth column:
CLS filtering
output.
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Outline

@ Morphological Image Processing
@ Mathematical Morphology
@ Erosion and Dilation
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Mathematical Morphology

@ The term morphology refers to the field of Biology that studies
the form and structure of animals and plants.
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Mathematical Morphology

@ The term morphology refers to the field of Biology that studies
the form and structure of animals and plants.

@ In Image Processing, the field of Mathematical Morphology or
Morphology is useful for analyzing shapes.
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Mathematical Morphology

@ Morphology uses set theory to represent objects in an image.
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Mathematical Morphology

@ Morphology uses set theory to represent objects in an image.
@ In binary images:

o the set of all white pixels defines an object
o pixels of the image are represented by ordered pairs of their
coordinates (x,y) € Z? on the image plane.
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Mathematical Morphology

@ Morphology uses set theory to represent objects in an image.
@ In binary images:

o the set of all white pixels defines an object
o pixels of the image are represented by ordered pairs of their
coordinates (x,y) € Z? on the image plane.

@ In grayscale images:
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Mathematical Morphology

@ Morphology uses set theory to represent objects in an image.
@ In binary images:

o the set of all white pixels defines an object
o pixels of the image are represented by ordered pairs of their
coordinates (x,y) € Z? on the image plane.

@ In grayscale images:
o the set of all white pixels defines an object
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Mathematical Morphology

@ Morphology uses set theory to represent objects in an image.
@ In binary images:
o the set of all white pixels defines an object
o pixels of the image are represented by ordered pairs of their
coordinates (x,y) € Z? on the image plane.
@ In grayscale images:
o the set of all white pixels defines an object
o pixels of the image are represented by ordered 3-tuples of their
coordinates on the image plan and the pixel intensities
(x,y,z) € Z3.
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@ Let B be a set of pixels in a binary image and w = (x,y) an
element of B.
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Mathematical Morphology

Reflection

@ Let B be a set of pixels in a binary image and w = (x,y) an
element of B.

o The reflection of B denoted by B is defined as

B = {(—x,~y)I¥(x.y) € B}.
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Translation

@ Let B be a set of pixels in a binary image and w = (x,y) a
coordinate point.
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Mathematical Morphology

Translation

@ Let B be a set of pixels in a binary image and w = (x,y) a
coordinate point.

@ The translation of B denoted by (B),, is defined as

(B)w = {(a,b) + (x,y)|¥(a,b) € B}.
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Translation

@ Let B be a set of pixels in a binary image and w = (x,y) a
coordinate point.

@ The translation of B denoted by (B),, is defined as

(B)w = {(a,b) + (x,y)|¥(a,b) € B}.

@ After translation, B has been shifted by w.
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Reflection and Translation Example

@ Original set of
points (left),
set after
reflection - B s
(middle), set 7|
after ‘ ‘

translation

(right).

(B),
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The Structuring Element (SE)

@ The structuring element also denoted by SE is a small set or
subimage used to examine an image for specific properties of
interest.
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The Structuring Element (SE)

@ The structuring element also denoted by SE is a small set or
subimage used to examine an image for specific properties of
interest.

@ SEs are basic shapes such as line, cross, diamond, etc.
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Mathematical Morphology

The Structuring Element (SE)

@ The structuring element also denoted by SE is a small set or
subimage used to examine an image for specific properties of
interest.

@ SEs are basic shapes such as line, cross, diamond, etc.

@ We usually need to define the origin of an SE for
morphological operations.
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Structuring Element Examples

@ Examples of - .
structuring L
elements. The
centers are
denoted by the
dots.
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Erosion

o Let A and B be sets of pixels in Z2.
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Erosion

o Let A and B be sets of pixels in Z2.
@ Then the erosion of A by B written A© B is defined as

Ae B ={w|(B)w C A}.
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Erosion

o Let A and B be sets of pixels in Z2.
@ Then the erosion of A by B written A© B is defined as

Ae B ={w|(B)w C A}.

@ To perform erosion we can move B over A and find all the
locations it will fit. The set of all such locations forms AS B.
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Equivalent Erosion Definition

o Let A and B be sets of pixels in Z2.
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Equivalent Erosion Definition

o Let A and B be sets of pixels in Z2.
@ Then the erosion of A by B written A© B is defined as

AS B ={w|(B)wNA°=0}.
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Equivalent Erosion Definition

o Let A and B be sets of pixels in Z2.
@ Then the erosion of A by B written A© B is defined as

AS B ={w|(B)wNA°=0}.

@ To perform erosion we can move B over A and find all the
locations it will fit. The set of all such locations forms AS B.
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Erosion and Dilation

The Erosion Process

@ Top row - A set A and a
structuring element B
(left). The result of

erosion of A by B (right).

@ Bottom row - A line SE
and the result of erosion
of A by the line SE.

@ Erosion can be used for
object shrinking or
thinning.
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Erosion and Dilation

Erosion Example

@ Original 486 x 486 image,
erosion output using
11 x 11 square SE,
erosion output using
15 x 15 square SE,
erosion output using
45 x 45 square SE (top to
bottom and left to right).

3 bk
..
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Dilation

o Let A and B be sets of pixels in Z2.
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Dilation

o Let A and B be sets of pixels in Z2.
@ Then the dilation of A by B written A® B is defined as

AdB={(x,y)+ (u,v)|¥V(x,y) € A¥(u,v) € B}.
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Erosion and Dilation

Dilation

o Let A and B be sets of pixels in Z2.
@ Then the dilation of A by B written A® B is defined as

AdB={(x,y)+ (u,v)|¥V(x,y) € A¥(u,v) € B}.

@ To perform dilation we can move B over A and replace every
point (x,y) € A with a copy of B centered at (x,y). The set
of all such locations forms A& B.
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Equivalent Dilation Definition

o Let A and B be sets of pixels in Z2.
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Equivalent Dilation Definition

o Let A and B be sets of pixels in Z2.
@ Then the dilation of A by B written A® B is defined as

A®B = {w|(B)yNA#0}.

A®B = {w|[(B),NA] C A}.
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Equivalent Dilation Definition

o Let A and B be sets of pixels in Z2.
@ Then the dilation of A by B written A® B is defined as

A®B = {w|(B)yNA#0}.

A®B = {w|[(B),NA] C A}.

@ The dilation of a A by B is the set of all translations w, such
that B and A overlap by at least one element.
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Equivalent Dilation Definition

o Let A and B be sets of pixels in Z2.
@ Then the dilation of A by B written A® B is defined as

A®B = {w|(B)yNA#0}.

A®B = {w|[(B),NA] C A}.

@ The dilation of a A by B is the set of all translations w, such
that B and A overlap by at least one element.

@ To perform dilation we can move B over A and replace every
point (x,y) € A with a copy of B centered at (x,y). The set
of all such locations forms A® B.
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The Dilation Process

@ Top row - A set Aand a d p— :
structuring element B ap |
(left). The result of ‘ ;}@:’4
dilation of A by B a [ — “laon
(right). o "

@ Bottom row - A line SE e df2
and the result of erosion ' T o
of A by the line SE. d |

o Dilation can be used for | S
object growing or o Py
thickening. ) ag g
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Erosion and Dilation

Dilation Example

@ Original image (left) and
the output of dilation of
the image by a diamond
SE. We observe that the
gaps in characters have
been bridged and the
dilated image is more
suitable for optical
character recognition.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the

company's software may
recognize a date using "00"
a5 1900 rather than the Fr

ea
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Erosion and Dilation

Duality

@ Erosion and dilation are duals of each other with respect to set
complement and reflection:

(AeB)* =A@ B

and A
(AeB) = A“SB.
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Erosion and Dilation

Duality

@ Erosion and dilation are duals of each other with respect to set
complement and reflection:

(AeB)* =A@ B

and A
(AeB) = A“SB.

@ This is particularly useful when the structuring element is
symmetric with respect to its origin.
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Morphological Image Processing

Outline and Learning Goals

Previous class:

@ Introduction to mathematical morphology
@ Definitions of erosion and dilation morphological operations

@ Applications of erosion and dilation

<

E is orp”o|og|ca| |mage !rocessmg

@ Opening and Closing
@ Hit-or-Miss Transformation
@ Other Morphological Algorithms
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Opening and Closing

Opening and Closing

@ Opening and closing are another two basic morphological
operations that are built upon the erosion and dilation
operations.
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Opening and Closing

@ Opening and closing are another two basic morphological
operations that are built upon the erosion and dilation
operations.

@ Opening widens gaps and breaks narrow bridges between
groups of pixels.
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Opening and Closing

Opening and Closing

@ Opening and closing are another two basic morphological
operations that are built upon the erosion and dilation
operations.

@ Opening widens gaps and breaks narrow bridges between
groups of pixels.

@ Closing eliminates small holes and fills gaps.




Morphological Image Processing
Morphological Image Processing

Opening and Closing

Opening

@ Opening of a set A by a structuring element B is symbolized
by Ao B and given by

AoB=(ASB)&B.
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Opening and Closing

Opening

@ Opening of a set A by a structuring element B is symbolized
by Ao B and given by

AoB=(ASB)&B.

@ So A is first eroded by B and the result is dilated by B.
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Opening and Closing

Geometric Interpretation of Opening

@ The opening of A by B is obtained by the union of all
translations of B that fit into A.
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Opening and Closing

Geometric Interpretation of Opening

@ The opening of A by B is obtained by the union of all
translations of B that fit into A.

@ So we can express opening as

Ao B =U,{(B);|(B); C A}.
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Opening and Closing

Opening Example

@ The morphological opening process can be explained as a
structuring element B rolling along inner boundary of A.

A°B=U|(B)J(B),C A

Translates of Bin A

' @ B
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Opening and Closing

Closing

@ Closing of a set A by a structuring element B is symbolized by
Ae B and given by

AeB=(A®B)SB.




Morphological Image Processing
Morphological Image Processing

Opening and Closing

Closing

@ Closing of a set A by a structuring element B is symbolized by
Ae B and given by

AeB=(A®B)SB.

@ So A is first dilated by B and the result is eroded by B.
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Opening and Closing

Geometric Interpretation of Closing

@ Closing of a set A by a structuring element B can be
resembled by rolling B on the outside of A's boundary and
tracking the points that are reached by B.
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Opening and Closing

Geometric Interpretation of Closing

@ Closing of a set A by a structuring element B can be
resembled by rolling B on the outside of A's boundary and
tracking the points that are reached by B.

@ A point w is an element of Ae B, iff (B),NA# 0 for any
translation of (B), that contains w.
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Opening and Closing

Closing Example

@ The morphological closing process can be explained as a
structuring element B rolling along outer boundary of A.

A+B—

KA Y
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Opening and Closing

Opening and Closing Operations

@ Morphological
opening and
closing of A by
a circular
structuring
element.




Morphological Image Processing
Morphological Image Processing
Opening and Closing

Opening and Closing Example

@ Morphological
opening
followed by
closing for
image
enhancement.

o} sy
. ).4&1}.:}1} A-B
A-B@R [(A-B)YBBISB=(A-8)-B
..
\ N\
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Opening and Closing

Opening and Closing Duality

@ The duality between opening and closing can be expressed by
(Ae B)* = (A0 B)

and

(Ao B)° = (Ae B)
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Opening and Closing

Opening Properties

Opening satisfies the following properties
© AoB is a subset (subimage) of A.
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Opening and Closing

Opening Properties

Opening satisfies the following properties
© AoB is a subset (subimage) of A.
©Q If Cis a subset of D, then Co B is a subset of Do B.

© (AoB)oB = AoB. After the first opening, any additional
opening operations have no additional effect.




Morphological Image Processing
Morphological Image Processing

Opening and Closing

Closing Properties

Closing satisfies the following properties
© A s a subset (subimage) of AeB.
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Opening and Closing

Closing Properties

Closing satisfies the following properties
© A s a subset (subimage) of AeB.
©Q If Cis a subset of D, then Ce B is a subset of D e B.
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Opening and Closing

Closing Properties

Closing satisfies the following properties
© A s a subset (subimage) of AeB.
©Q If Cis a subset of D, then Ce B is a subset of D e B.

© (AeB)e B = AeB. After the first closing, any additional
opening operations have no additional effect.
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Hit-or-Miss Transformation

@ This method is used to detect shapes.
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Hit-or-Miss Transformation

@ This method is used to detect shapes.

@ Let A be a set consisting of sets C, D, and E, such that
A=CUDUE.
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Hit-or-Miss Transformation

@ This method is used to detect shapes.

@ Let A be a set consisting of sets C, D, and E, such that
A=CUDUE.

@ Let B denote the set containing D and its background W,
thatis B=DUW.
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Hit-or-Miss Transformation

Hit-or-Miss Transformation

@ This method is used to detect shapes.

@ Let A be a set consisting of sets C, D, and E, such that
A=CUDUE.

@ Let B denote the set containing D and its background W,
thatis B=DUW.

@ Assume that we want to find the location of D.
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Hit-or-Miss Transformation

Hit-or-Miss Transformation

This method is used to detect shapes.

@ Let A be a set consisting of sets C, D, and E, such that
A=CUDUE.

Let B denote the set containing D and its background W,
thatis B=DUW.

Assume that we want to find the location of D.

The location of D is given by the intersection of the erosion of
A by D with the erosion of A€ by W — D. This is expressed as

A® B=(AcD)n(A°e(W —-D)).
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Hit-or-Miss Transformation

Hit-or-Miss Transformation

o Ifwelet By =D and B, = W — D, it follows that

A®B= (A0 B)N(A°E By).
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Hit-or-Miss Transformation

Hit-or-Miss Transformation

o Ifwelet By =D and B, = W — D, it follows that
A®B= (A0 B)N(A°E By).

@ By utilizing duality between erosion and dilation we get

A®B=(AGB))—(A® By).
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Hit-or-Miss Transformation

Hit-or-Miss Transformation Process

Find the location of D using
the hit-or-miss process.

© Erode A by D.
© Erode Ac by W—D.

© Find intersection of
previous two.

A=CUDUE w —w-Dn)

AS(W-D)

(ASD)(ASW - D) —
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Other Morphological Algorithms

Boundary Extraction

@ Boundary extraction is used very frequently in image
processing and analysis.
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@ Boundary extraction is used very frequently in image
processing and analysis.

@ The boundary of a set A denoted by B(A), is obtained by
erosion by an SE element B followed by the difference between
the original image and the eroded image.
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Boundary Extraction

@ Boundary extraction is used very frequently in image
processing and analysis.

@ The boundary of a set A denoted by B(A), is obtained by
erosion by an SE element B followed by the difference between
the original image and the eroded image.

@ This is expressed by

B(A)=A—(AcB).
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Boundary Extraction

@ Boundary extraction is used very frequently in image
processing and analysis.

@ The boundary of a set A denoted by B(A), is obtained by
erosion by an SE element B followed by the difference between
the original image and the eroded image.

@ This is expressed by

B(A)=A—(AcB).

@ The boundary thickness depends on the structuring element.

v
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Other Morphological Algorithms

Boundary Extraction Example

Find the boundary of D.
© Erode A by 3 x 3 square
SE.

© Subtract eroded image
from original.
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Connected Component Extraction

@ Often times we want to find the connected components of a
binary image.
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Connected Component Extraction

@ Often times we want to find the connected components of a
binary image.

@ Recall that a connected component is a set of pixels that are
related by an adjacency type.
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Other Morphological Algorithms

Connected Component Extraction

@ Often times we want to find the connected components of a
binary image.

@ Recall that a connected component is a set of pixels that are
related by an adjacency type.

@ We can use morphological operations to find the connected
components of a binary image.
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Other Morphological Algorithms

Connected Component Extraction

@ Let A be a set containing our object coordinates with one or
more connected components, and B be a structuring element.
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Connected Component Extraction

@ Let A be a set containing our object coordinates with one or
more connected components, and B be a structuring element.

o Let Xp be a set that contains the connected components.
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Connected Component Extraction

@ Let A be a set containing our object coordinates with one or
more connected components, and B be a structuring element.

o Let Xp be a set that contains the connected components.

@ Starting from Xy we can find the connected component by
iteratively applying

Xk = (Xk,1 @B)ﬂA,k: 1,2,3,...
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Connected Component Extraction

Let A be a set containing our object coordinates with one or
more connected components, and B be a structuring element.

Let Xy be a set that contains the connected components.

Starting from Xy we can find the connected component by
iteratively applying

Xk = (Xk,1 @B)ﬂA,k: 1,2,3,...

The process ends when X, = Xj_1.
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Connected Component Extraction Example

Find the connected
component of A.

O Initialize connected
component subimage
with one point.

© Repeat:

@ Dilate connected
component.
@ Find intersection of
previous result with A.
© Until connected
component does not
change.
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Other Morphological Algorithms

Active Research Areas

@ ISMM: International Symposium on Mathematical Morphology.
@ Scale-space theory.

@ 3D image analysis.
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Image Segmentation

Outline

Previous chapter:

@ Introduction to mathematical morphology

@ Definitions of erosion, dilation, opening, closing morphological
operators

@ Morphological algorithms (hit-or-miss, boundary extraction,
connected component labeling)

mage Segmentation
@ Image Segmentation: Background and Definitions
@ Point, Line and Edge Detection
@ Segmentation by Thresholding
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Image Segmentation Introduction

o Image segmentation is a key step in image analysis and
computer vision.
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o Image segmentation is a key step in image analysis and
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@ Segmentation divides the visual scene into smaller regions and
objects.
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Image Segmentation Introduction

o Image segmentation is a key step in image analysis and
computer vision.

@ Segmentation divides the visual scene into smaller regions and
objects.

@ The level of detail is driven by the application.
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Image Segmentation Introduction

o Image segmentation is a key step in image analysis and
computer vision.

@ Segmentation divides the visual scene into smaller regions and
objects.

@ The level of detail is driven by the application.

@ Image segmentation is a difficult task because of imaging
artifacts, limits in imaging spatial and intensity resolution, and
difficulty in defining the perfect segmentation.
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Image Segmentation Introduction

@ Sometimes we use prior knowledge to increase segmentation
accuracy. One example is when the environment is controlled
as in automated inspection applications (e.g., quality control
of electronic components).
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Image Segmentation Introduction

@ Sometimes we use prior knowledge to increase segmentation
accuracy. One example is when the environment is controlled
as in automated inspection applications (e.g., quality control
of electronic components).

@ When the environment is not controlled, we select sensors that
will reveal the image attributes we are looking for. For
example, in remote sensing we may use multi-channel imaging
sensors to identify crops, rivers, buildings and roads.
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Image Segmentation Introduction

@ Most of the segmentation algorithms make use of the
fundamental properties of discontinuity and similarity.
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@ Most of the segmentation algorithms make use of the
fundamental properties of discontinuity and similarity.

@ Methods that detect discontinuities are line and edge detection
and linking techniques.
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Image Segmentation Introduction

@ Most of the segmentation algorithms make use of the
fundamental properties of discontinuity and similarity.

@ Methods that detect discontinuities are line and edge detection
and linking techniques.

@ Similarity-based methods divide the image into homogeneous
regions. Such methods are thresholding, region growing,
region splitting and merging techniques.
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Image Segmentation Introduction

@ Most of the segmentation algorithms make use of the
fundamental properties of discontinuity and similarity.

@ Methods that detect discontinuities are line and edge detection
and linking techniques.

@ Similarity-based methods divide the image into homogeneous
regions. Such methods are thresholding, region growing,
region splitting and merging techniques.

@ Nowadays it is common to develop methods combine ideas
from the discontinuity-based and region-based segmentation.
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Image Segmentation Definition

Let R represent the spatial region of the image. Image
segmentation can be defined as the process that partitions R into n
subregions Ry, R», ..., R, such that

@ U R,=R.
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Image Segmentation Definition

Let R represent the spatial region of the image. Image
segmentation can be defined as the process that partitions R into n
subregions Ry, R», ..., R, such that

QO UL,R,=R.

@ R; is a connected set, for i =1,2,...,n.
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Image Segmentation Definition

Let R represent the spatial region of the image. Image
segmentation can be defined as the process that partitions R into n
subregions Ry, R», ..., R, such that

QO UL,R,=R.

@ R; is a connected set, for i =1,2,...,n.

Q@ RNR=0Vi,j:i#]j.
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Image Segmentation Definition

Let R represent the spatial region of the image. Image
segmentation can be defined as the process that partitions R into n
subregions Ry, R», ..., R, such that

QO UL R, =R.

@ R; is a connected set, for i =1,2,...,n.
Q@ RNR =0Vij:i#]j.

Q Q(R))=TRUE for i=1,2,...,n.
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Image Segmentation Definition

Let R represent the spatial region of the image. Image
segmentation can be defined as the process that partitions R into n
subregions Ry, R», ..., R, such that

QO UL,R,=R.

@ R; is a connected set, for i =1,2,...,n.

Q@ RNR =0Vij:i#]j.

Q Q(R))=TRUE for i=1,2,...,n.

Q@ Q(RiUR;)= FALSE for any adjacent regions R; and R; with

i#J,

where Q(Ry) is a logical predicate defined over the points in
set Ry, for example Q(R;): all pixels in R; have the same
intensity.
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Image Segmentation Definition

© In edge-based segmentation we are looking for discontinuities
between adjacent regions.
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Image Segmentation: Background and Definitions

Image Segmentation Definition

© In edge-based segmentation we are looking for discontinuities
between adjacent regions.

@ In region-based segmentation we utilize intensity homogeneity
criteria to form each region.
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Image Segmentation Example

o Edge-based vs.
region-based
segmentation.
Top: ideal
case. Bottom:
noisy case.
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Background

@ Here we detect sharp and local changes of intensity.
@ Looking for three types of features: isolated points, lines and
edges.

o To detect these features we first calculate first- and
second-order derivatives.

After using Taylor series about x, keeping the linear terms and
setting Ax =1 we get the following approximations

of of

E = f(X+1ay)_f(X7y)a @ = f(X7y+1)_f(X’y)’
&—f( +1,y)—2f(x,y) +f(x—1,y)
P =Tr(x 8% X,y X Y )
2

ayz = f(X7y+1)_2f(X7y)+f(X7y_ 1)
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First- and Second-order Derivatives of Intensity

, . —
o Let's review . |
. . \ |
the intensity ’
profile .
\ |
example, along \ ‘ (-
with the first- B
an d - Isolated point r’**‘
second-order R T
~ I\ Flat segment !
derivatives. ) i oSN
0 LECE "—e - —e-e-
Image strip [5[5[4[3]2]1JoJoJo]sJoToJoToTtTsT1TeToToTo 7 7[7 17 - []
UL LT
First derivative —-1-1-1-1-10 0 6 6000 1 2-2-10007 0 0 0
NN RN
Second derivative —10 0 0 0 1 06-12600 11411007700
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o First-order derivatives produce thicker edges
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@ Second-order derivatives have a stronger response to isolated
lines, points and noise.
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Properties of First- and Second-order Derivatives

o First-order derivatives produce thicker edges

@ Second-order derivatives have a stronger response to isolated
lines, points and noise.

@ Second-order derivatives produce a double-edge response at
ramps and steps.
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Properties of First- and Second-order Derivatives

First-order derivatives produce thicker edges

Second-order derivatives have a stronger response to isolated
lines, points and noise.

@ Second-order derivatives produce a double-edge response at
ramps and steps.

The sign of second-order derivative can show the intensity
transition.
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Point Detection

@ Because the second-order derivative can detect thin details, it
is suitable for point detection.
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Point Detection

@ Because the second-order derivative can detect thin details, it
is suitable for point detection.

@ We can apply a Laplacian filter followed by thresholding to
detect points.

9%f  9°f
2 _
Vof(x,y) = 352 +8y2'

The discrete approximation is

V2f(x,y)=f(x+1,y)+f(x—1,y)+f(x,y+1)+Ff(x,y —1)—4f(x,y).
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Point Detection

@ Because the second-order derivative can detect thin details, it
is suitable for point detection.

@ We can apply a Laplacian filter followed by thresholding to
detect points.

9%f  9°f
2 _
Vof(x,y) = 352 +8y2'

The discrete approximation is
V2E(x,y) = F(x+1,y) +F(x=1,y)+ F(x,y +1)+f(x,y —1) = 4f(x,y).

@ We apply the Laplacian detector by spatial filtering, then apply
threshold T to the filter's output L(x,y) to detect points:

1 if IL(x,y)|>T
glx.y) = {0 otherwise.
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Line Detection

@ Because second-order derivatives produce a stronger response
and produce thinner lines than first-order derivatives, the
former can be used for line detection.
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Line Detection

@ Because second-order derivatives produce a stronger response
and produce thinner lines than first-order derivatives, the
former can be used for line detection.

@ We can use the positive-only values of the Laplacian to
address double-edges.
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Line Detection

@ Because second-order derivatives produce a stronger response
and produce thinner lines than first-order derivatives, the
former can be used for line detection.

@ We can use the positive-only values of the Laplacian to
address double-edges.

@ To suppress peaks caused by noise we can apply thresholding
to the Laplacian output.
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Line Detection

@ Because second-order derivatives produce a stronger response
and produce thinner lines than first-order derivatives, the
former can be used for line detection.

@ We can use the positive-only values of the Laplacian to
address double-edges.

@ To suppress peaks caused by noise we can apply thresholding
to the Laplacian output.

@ To detect specific line directions we can use masks with
different orientations.

1 1 2 1 1 1 2 1 1 1 2

1 1 1 1 2 1 2 1 2 1

Horizontal +457 Vertical 457
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Edge Models

o Step edge (left): this is a transition between two intensity
levels that is completed in 1 pixel. This is an ideal edge found
in computer-generated images.
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Edge Models

o Step edge (left): this is a transition between two intensity
levels that is completed in 1 pixel. This is an ideal edge found
in computer-generated images.

e Ramp edge (middle): this model is better approximation for
blurred and noisy edges that appear in practice. The slope is
reciprocal to the amount of blurring.
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Edge Models

o Step edge (left): this is a transition between two intensity
levels that is completed in 1 pixel. This is an ideal edge found
in computer-generated images.

e Ramp edge (middle): this model is better approximation for
blurred and noisy edges that appear in practice. The slope is
reciprocal to the amount of blurring.

@ Roof edge (right): these are models of lines through regions.
These edges appear in digitized line drawings.
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Edge Models Example

o All edge types
can occur in
the same
image.
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Edge Modeling Conclusions

@ The first-order
magnitude can be
used to detect the
presence of an edge.

Horizontal intensity
profile

@ The sign of the
second-order
derivative can be used
to localize the side of

an edge.

First
derivative

Second
derivative

Zero crossing _/ .

@ The zero-crossing of
second-order
derivative can localize
the center of a thick
edge.
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Effect of Noise on Edges

o Noise can severely affect edge
detection.

@ This happens because both
edges and noise correspond to
high frequency content.
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Edge Detection Steps

© Image smoothing for noise reduction.
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Edge Detection Steps

© Image smoothing for noise reduction.

@ Detection of edge points - extract all candidates for edge
points.




Image Segmentation
Image Segmentation
Point, Line and Edge Detection

Edge Detection Steps

© Image smoothing for noise reduction.

@ Detection of edge points - extract all candidates for edge
points.

© Edge localization - select from candidates the edge points.
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Edge Detection using the Image Gradient

@ The gradient is defined as

Vf = grad(f) = [ g; } = [

Q)| QY|
k‘mx‘\
| I
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Edge Detection using the Image Gradient

@ The gradient is defined as

Vf = grad(f) = [ g; } = [

Q)| QY|
k‘mx‘\
| I

@ The magnitude is given by

M(x,y) = mag(Vf) = /g2 + g}

@ The angle is given by

o(x,y) = arctan [gy] .
8x
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Gradient Operators

o We know that partial derivatives
are approximated by

of
g = f(X+1’y)7f(X7)/)

and

3; = f(X,y+1)—f(X,y) - 1 —?phmit 0 1

o To take diagonal differences we
use Roberts operators. e

@ Prewitt operators compute the
derivatives using 3 x 3 masks.

@ Sobel operators use a weight of ——
2 at the center location.
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Gradient-based Edge Detection Example

@ Image smoothing using 5 x5
averaging.

@ OQutput produced by Sobel
horizontal and vertical edge
detectors

@ Gradient magnitude is finally
computed.
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Thresholding

@ Thresholding is a simple and fast operation that finds frequent
use in image processing.
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Thresholding

@ Thresholding is a simple and fast operation that finds frequent
use in image processing.

@ Here we use thresholding to partition images into regions
based on intensity values.
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Thresholding Basics

o Let f(x,y) the intensity function of an image, and let the
image consist of light objects on a dark background. Then the
intensity histogram of the image will have two main modes
separated by a valley at intensity T.
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Thresholding Basics

o Let f(x,y) the intensity function of an image, and let the
image consist of light objects on a dark background. Then the
intensity histogram of the image will have two main modes
separated by a valley at intensity T.

@ We can segment the image by the following operation

1 iff(xy)>T
gbxy) = {O if f(x,y)<T.
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Thresholding Basics

o Let f(x,y) the intensity function of an image, and let the
image consist of light objects on a dark background. Then the
intensity histogram of the image will have two main modes
separated by a valley at intensity T.

@ We can segment the image by the following operation

1 iff(xy)>T
gbxy) = {O if f(x,y)<T.

e T is fixed: global thresholding.
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Thresholding Basics

o Let f(x,y) the intensity function of an image, and let the
image consist of light objects on a dark background. Then the
intensity histogram of the image will have two main modes
separated by a valley at intensity T.

@ We can segment the image by the following operation

1 iff(xy)>T
gbxy) = {O if f(x,y)<T.

e T is fixed: global thresholding.
@ T = T(x,y): variable thresholding.
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Thresholding Example

@ Intensity
thresholding
can be
visualized using
the intensity ‘ H
histogram of |I|||‘ |||. . |||H|I|
the image } " "
pixels. j
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Thresholding Key Factors

@ Separation between histogram peaks.

T,
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Thresholding Key Factors

@ Separation between histogram peaks.

@ Noise level.
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Thresholding Key Factors

@ Separation between histogram peaks.
@ Noise level.

@ Relative sizes of objects and background.




Image Segmentation
Image Segmentation

Segmentation by Thresholding

Thresholding Key Factors

Separation between histogram peaks.
Noise level.
Relative sizes of objects and background.

The uniformity of illumination source.
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Thresholding Key Factors

Separation between histogram peaks.
Noise level.

Relative sizes of objects and background.
The uniformity of illumination source.

The uniformity of reflectance of an object.
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Segmentation by Thresholding

Effect of Noise on Thresholding

o Noise
corruption can
change
histogram
properties.
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Segmentation by Thresholding

Effect of lllumination and Reflectance on Thresholding

e Changes in
illuminant
and/or
reflectance can
change the
histogram
properties.
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Global Tresholding

@ Set initial threshold T.
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Global Tresholding

@ Set initial threshold T.

@ Segment image into two regions Gy and Gy, with Gi(x,y) > T
and Gy(x,y) < T.




Image Segmentation
Image Segmentation

Segmentation by Thresholding

Global Tresholding

@ Set initial threshold T.

@ Segment image into two regions Gy and Gy, with Gi(x,y) > T
and Gy(x,y) < T.

© Compute average intensities m; and my over Gy and G;
respectively.




Image Segmentation
Image Segmentation

Segmentation by Thresholding

Global Tresholding

@ Set initial threshold T.

@ Segment image into two regions Gy and Gy, with Gi(x,y) > T
and Gy(x,y) < T.

© Compute average intensities m; and my over Gy and G;
respectively.

© Compute new threshold T =1/2(m; + mo).
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Global Tresholding

@ Set initial threshold T.

@ Segment image into two regions Gy and Gy, with Gi(x,y) > T
and Gy(x,y) < T.

© Compute average intensities m; and my over Gy and G;
respectively.

© Compute new threshold T =1/2(m; + mo).

© Repeat steps 2 to 4 until the difference between successive
values of T becomes smaller than a fixed value AT.
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@ Fingerprint segmentation using thresholding.
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:
© Compute normalized histogram of input image with
components p;,Vi € [0,L—1].
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

© Compute normalized histogram of input image with
components p;,Vi € [0,L—1].
@ Compute cumulative sums Py (k),Vk € [0,L—1].
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

© Compute normalized histogram of input image with
components p;,Vi € [0,L—1].

@ Compute cumulative sums Py (k),Vk € [0,L—1].

© Compute cumulative means m(k),Vk € [0,L—1].
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

© Compute normalized histogram of input image with
components p;,Vi € [0,L—1].

@ Compute cumulative sums Py (k),Vk € [0,L—1].

© Compute cumulative means m(k),Vk € [0,L—1].

o

Compute global intensity mean m¢ and class-conditional
means my (k) and my(k), Vk € [0,L—1].
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

© Compute normalized histogram of input image with
components p;,Vi € [0,L—1].

@ Compute cumulative sums Py (k),Vk € [0,L—1].

© Compute cumulative means m(k),Vk € [0,L—1].

o

Compute global intensity mean m¢ and class-conditional
means my (k) and my(k), Vk € [0,L—1].

@ Compute between-class variance 03 (k),Vk € [0,L—1].
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

o

(2]
o
o

Compute normalized histogram of input image with
components p;,Vi € [0,L—1].

Compute cumulative sums Py (k),Vk € [0,L—1].
Compute cumulative means m(k),Vk € [0,L—1].
Compute global intensity mean m¢ and class-conditional
means my (k) and my(k), Vk € [0,L—1].

Compute between-class variance 63(k),Vk € [0,L—1].

Find Otsu threshold kx as the value of k for which 63 (k) is
maximum. If various maxima are found, then average maxima
arguments to find one value.
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

© Compute normalized histogram of input image with
components p;,Vi € [0,L—1].

@ Compute cumulative sums Py (k),Vk € [0,L—1].

© Compute cumulative means m(k),Vk € [0,L—1].

@ Compute global intensity mean mg and class-conditional
means my (k) and my(k), Vk € [0,L—1].

@ Compute between-class variance 03 (k),Vk € [0,L—1].

O Find Otsu threshold kx as the value of k for which o3(k) is

maximum. If various maxima are found, then average maxima
arguments to find one value.

o5 (k)

@ Compute separability measure n(kx) = =2~
G
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Effect of Noise Reduction on Thresholding

@ Original image
and its
histogram.

@ Segmentation
produced by
global
thresholding
(bottom left),
and Otsu's
thresholding
(bottom right).
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Otsu’s Thresholding Example

o Image with
Gaussian noise
(left column).

@ Segmentation
produced without
image denoising
(top right).

@ Segmentation
produced after
image denoising by
a b x b averaging
mask (bottom
right).
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Outline

@ Image Segmentation
@ Region-based Segmentation
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Region-based Segmentation

@ We know that image segmentation aims to partition an image
into regions corresponding to objects or part of objects.
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Region-based Segmentation

@ We know that image segmentation aims to partition an image
into regions corresponding to objects or part of objects.

@ So far we have discussed segmentation by boundary detection
and segmentation by thresholding.
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Region-based Segmentation

@ We know that image segmentation aims to partition an image
into regions corresponding to objects or part of objects.

@ So far we have discussed segmentation by boundary detection
and segmentation by thresholding.

@ Here we introduce two methods that form regions in the image
plane, called region growing and region splitting and merging.
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Region Growing

@ Region growing groups pixels or regions into larger regions
using specific predicates or criteria for growth.
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Region Growing

@ Region growing groups pixels or regions into larger regions
using specific predicates or criteria for growth.

@ Region growing starts from specific points that are called
seeds.
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Region Growing

@ Region growing groups pixels or regions into larger regions
using specific predicates or criteria for growth.

@ Region growing starts from specific points that are called
seeds.

@ The selection of criteria is a key element. Frequently used
properties include color, intensity and texture similarity.
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Region Growing Challenges

o Selection of seeds can affect final results. Seeds can be
selected manually or using prior knowledge of the imaging
data.
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Region Growing Challenges

o Selection of seeds can affect final results. Seeds can be

selected manually or using prior knowledge of the imaging
data.

@ The stopping rule is another factor. Because image
segmentation is an np-complete problem, the region growing
path is suboptimal and can lead to errors.
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Region Growing Challenges

o Selection of seeds can affect final results. Seeds can be
selected manually or using prior knowledge of the imaging
data.

@ The stopping rule is another factor. Because image
segmentation is an np-complete problem, the region growing
path is suboptimal and can lead to errors.

@ To address such challenges we can incorporate prior
information about the object’s expected intensity, color,
texture or shape.
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Region Growing Algorithm

Let, f(x,y): input image, S(x,y): seed array (1 for seeds, O for
background), Q(x,y): predicate applied to each location (x,y). Region
growing using 8-connectivity can be implemented as follows:

@ Find all connected components in S(x,y) and erode connected
components down to one pixel.
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Region Growing Algorithm

Let, f(x,y): input image, S(x,y): seed array (1 for seeds, O for
background), Q(x,y): predicate applied to each location (x,y). Region
growing using 8-connectivity can be implemented as follows:

@ Find all connected components in S(x,y) and erode connected
components down to one pixel.

© Form an image fg such that

1 if Q(x,y)is TRUE
f =
olx.y) {0 otherwise.
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Region Growing Algorithm

Let, f(x,y): input image, S(x,y): seed array (1 for seeds, O for
background), Q(x,y): predicate applied to each location (x,y). Region
growing using 8-connectivity can be implemented as follows:

@ Find all connected components in S(x,y) and erode connected
components down to one pixel.

© Form an image fg such that

1 if Q(x,y)is TRUE
f =
olx.y) {0 otherwise.

© Form an image g that will include the seeds and all the points

w;(x;i,y;) for which i) fo(x;,y; =1, and ii) w; is 8-connected to a
seed point.
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Region Growing Algorithm

Let, f(x,y): input image, S(x,y): seed array (1 for seeds, O for
background), Q(x,y): predicate applied to each location (x,y). Region
growing using 8-connectivity can be implemented as follows:

@ Find all connected components in S(x,y) and erode connected
components down to one pixel.

© Form an image fg such that

1 if Q(x,y)is TRUE
f =
olx.y) {0 otherwise.

© Form an image g that will include the seeds and all the points

w;(x;i,y;) for which i) fo(x;,y; =1, and ii) w; is 8-connected to a
seed point.

© Assign to each connected component a unique region label and form
the segmentation output.
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Region Growing Example

@ Region growing using threshold predicate.

@ Predicate:

_ JTRUE if [f(x,y)—s|<T
Qlx.y) = {FALSE otherwise.




Image Segmentation
Image Segmentation

Region-based Segmentation

Region Splitting

@ These methods can be divided into two steps.
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Region Splitting

@ These methods can be divided into two steps.

© Recursively divide the image into sub-regions for which a
predicate @ is FALSE.
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Region Splitting

@ These methods can be divided into two steps.

© Recursively divide the image into sub-regions for which a
predicate @ is FALSE.
@ Merge neighboring sub-regions for which @ is TRUE.
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Region Splitting

@ These methods can be divided into two steps.
© Recursively divide the image into sub-regions for which a
predicate @ is FALSE.
@ Merge neighboring sub-regions for which @ is TRUE.
@ A standard approach is to recursively divide the image into
quadrants and generate hierarchical structures that are called

quadtrees.
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Region Splitting and Merging

* If we apply splitting only, then we may produce adjacent regions
that are similar but belong to different connected components.
* To address this we can add a merging step as follows:

© Recursively split into four quadrants any region R; for which
Q(R;) is FALSE.

* Several variations of this technique have been proposed, that may
also employ graph theory.
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Region Splitting and Merging

* If we apply splitting only, then we may produce adjacent regions
that are similar but belong to different connected components.
* To address this we can add a merging step as follows:

© Recursively split into four quadrants any region R; for which
Q(R;) is FALSE.
@ Recursively merge any adjacent regions R; and R; for which
Q(RiUR;) is TRUE.
* Several variations of this technique have been proposed, that may
also employ graph theory.




Image Segmentation

Image Segmentation

Region-based Segmentation

Region Growing Example

@ Region splitting and merging using a mean mg, and standard
deviation Og, - based predicate for a region R;.

o Predicate:

Q(R) = TRUE ifor >aAND O<mg <b
""" ) FALSE otherwise.




