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Lecture Outline 

• Goal: Overview of Digital Image Processing 

• Topics: 

• Scope of image processing field 

• State of the art in digital image processing 

• Outline of main image processing stages 

• Components of a system 

• Applications 

 

 



What is Digital Image Processing? 

• Answer: Manipulation of digital images by computer. 

• Image processing focusing on two main tasks 

• Improvement of pictorial information for human interpretation and 

high level processing 

• Processing of imaging data for storage and transmission. 



Origins of Digital Image Processing 

• Telecommunications and 
more specifically 
transmission of pictorial 
content. 

• Technological 
breakthroughs in 
electronics, digital 
computers and 
programming languages, 
led to the foundation of 
image processing. 

• Early computer techniques 
aimed to correct distortions 
in images of the moon 
transmitted by Ranger 7 
(Jet Propulsion Lab, 1964). 



Computing Machinery Origins 

• Antiquity: Abacus 



Computing Machinery Origins 

• Modern times: Von Neumann architecture 
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Image Processing Application Fields 

• The range of applications of digital image processing is very 
broad. 

• We can categorize them by the imaging source. 

• Imaging data is mostly sensed in the electromagnetic energy 
spectrum. 

• Other sources include acoustic, ultrasonic and electronic. 

• In the electromagnetic energy spectrum the following types are 
acquired 
• X-ray 

• Gamma-ray 

• Untraviolet band 

• Visible and Infrared bands 

• Microwave band 

• Radio band 

• Others (acoustic, ultrasonic, electron microscopy) 

 



Gamma-Ray Imaging 

• High energy band in 

EM spectrum. 

• Applications in nuclear 

medicine and 

astronomical 

observations. 

 

 

 



Gamma-Ray Imaging in Nuclear Medicine 

• Administer radioactive agent 

in patient’s body. 

• Agent emits gamma rays as 

it decays. 

• Used to locate sites of 

pathology (tumors for 

example) in bone, lungs and 

other tissues. 

• Examples: Single Photon 

Emission Computed 

Tomography (SPECT), 

Positron Emission 

Tomography (PET) imaging. 

 

 

 



Gamma-Ray Imaging in Astronomy 

• Astronomical observations: sense gamma-ray band 

produced by natural radiation of imaged scene. 

 

 

 



X-Ray Imaging 

• X-rays are generated in a 
vacuum tube with anode and 
cathode. 

• Cathode is heated, electrons 
are released to anode. 

• When electron strikes a 
nucleus, x-ray radiation is 
emitted. 

• Energy is controlled by 
voltage applied across anode 
and by current applied to 
filament of cathode. 

• X-rays pass through patient, 
some absorbed by tissues, 
others falling on the film. 



Digital X-Ray Imaging 

• Two methods 

1. Digitize x-ray films, or 

2. Use phosphor screens 

or other devices to 

convert x-rays to light, 

passed to light 

sensitive system. 



Ultraviolet Imaging 

• Fluorescence 

microscopy 

• Use ultraviolet source to 

excite fluorescent 

material. 

• Lights is emitted in red 

light wavelengths. 



Light Microscopy Imaging 

• Light microscopes use 

visible light to detect 

small objects. 

• Further categories of 

visible light microscopy 

are optical and 

fluorescence 

microscopy. 

• Applications 

• pharmaceutical 

• microinspection 

• material characterization. 

 



Magnetic Resonance Imaging (MRI) 

• Patient under a 
powerful static magnet 
field 𝐵0. 

• Radio Frequency (RF) 
Coil passes radio 
waves through body. 

• Acquire response 
magnetic dipoles 
(mostly protons) in 
body and reconstruct 
image. 



Imaging Besides the EM Spectrum 

There exist imaging techniques that 
acquire information outside the EM 
spectrum.  

Examples are acoustic imaging, 
electron microscopy, and synthetic 
images. 



Acoustic 

• Imaging acquired in lower frequencies (hundreds of Hz) 
for geological applications. Higher frequencies (millions of 
Hz) are sensed for ultrasound imaging. 

• Applications: mineral and oil exploration and geology. 



Ultrasound Imaging 

• Sound waves propagate 
mechanical energy 
causing periodic vibration 
of particles in a continuous 
elastic medium. 

• Unltrasound imaging 
system components 
1. piezoelectric crystal-based 

transducer (transmitter and 
receiver) 

2. control panel with pulse 
generation and control 

3. computer processing a.nd 
display system. 



Electron Microscopy 

• This modality operates similarly to optical microscopy, 

except for using a focused beam of electrons instead of 

light to image a specimen. 



Synthetic Imaging 

• Computer-generated 

images. Examples: 

• Fractals 

• 3-D renderings using 

computer graphics. 



Imaging in the Visible Spectrum 

• Ubiquitous in 

modern 

world. 

• Used for 

everyday 

activities, also 

supported by 

technological 

advances. 

 



Multiple Imaging Modalities 

• It is frequently useful to acquire multiple images of the same 

scene that sense different wavebands, or physical properties. 

• Information of multiple modalities is combined before further 

analysis. 



Components of Image Processing 

System 



Image Processing Tasks  
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Key Stages in Digital Image Processing: 
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Key Stages in Digital Image Processing: 
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Key Stages in Digital Image Processing: 
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Applications: Image Enhancement 

• One of the most common uses of DIP techniques: 

improve quality, remove noise etc. 



Applications: Space 

• Launched in 1990 the Hubble  

telescope can take images of  

very distant objects. 

• However, an incorrect mirror  

made many of Hubble’s  

images useless. 

• Image processing  

techniques were  

used to fix this. 

http://en.wikipedia.org/wiki/Image:Hst_sts82.jpg


Applications: Medicine 

• Take slice from MRI scan of dog heart, and find 

boundaries between types of tissue. 

• Image with gray levels representing tissue density. 

• Use a suitable filter to highlight edges. 

Original MRI Image of a Dog Heart Edge Detection Image 



Applications: GIS 

• Geographic Information Systems 

• Digital image processing techniques are used extensively to 

manipulate satellite imagery. 

• Terrain classification 

• Meteorology 



Applications: Industrial Inspection 

 

• Human operators are 

expensive, slow and unreliable. 

 

• Make machines do the 

job instead. 

 

•  Industrial vision systems  

are used in all kinds of 

industries. 

 



Applications: PCB Inspection 

• Printed Circuit Board (PCB) inspection. 

• Machine inspection is used to determine that all components 

are present and that all solder joints are acceptable. 

• Both conventional imaging and x-ray imaging are used. 



Applications: Law Enforcement 

• Image processing techniques 

are used extensively by law 

enforcers. 

• Number plate recognition for speed 

cameras/automated toll systems. 

• Fingerprint recognition. 



Examples: HCI 

• Try to make Human Computer 

Interaction (HCI) more natural. 

• Face recognition. 

• Gesture recognition. 



I: vertical projection 

J: vertical projection 

Video frame t 

Video frame t+1 

Stabilized frame t+1 
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𝑆𝑆𝐷 𝑢 − 𝑁𝑃𝐴 

Applications: video frame stabilization 
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Lecture Outline 

•Goal: Introduction to basic concepts of image processing 

•Topics: 
•Human vision 

•Electromagnetic spectrum 

•Imaging sensors 

•Image sampling and quantization 
 



Human Vision 

• The lens changes shape 

to achieve proper focus 
• Eye structure 



Light and the Electromagnetic 

Spectrum 
• Electromagnetic waves: propagating sinusoidal waves 

with wavelength λ. 



Light and the Electromagnetic 

Spectrum 



Light and the Electromagnetic 

Spectrum 
• Definitions: 

• Monochromatic: light void of color. 

• Chromatic light: 0.43 to 0.79nm. 

• Radiance: total amount of energy flowing from source. 

• Luminance: amount of energy from a light source 

perceived by observer. 

• Brightness: subjective descriptor of light perception that is 

practically impossible to measure. 

• Non-visible wavelengths: 

• Gamma rays, X-rays, near infrared, far infrared. 



Image Sensing and Acquisition 

• Most of the image acquisition processes follow the model of 
“illumination” source and “scene”. 

• The “illumination” source radiates energy that is reflected or 
absorbed by elements of the “scene”. 

• Illumination sources may be a visible light source, infrared, X-
ray transmitter, MRI coil, an ultrasound probe, etc. 

• The scenes can be human cells, buried rock formations, a 
meteorite, a human brain or liver, a human face, indoor/outdoor 
landscapes, etc. 



Image Sensing and Acquisition 

• Incoming energy is 

transformed into 

voltage by sensors that 

respond to the specific 

type of energy that is 

detected. 

• The voltage is then 

converted into digital 

signal by a digitization 

system. 

 



Single Sensor 

• Main idea: incoming 

energy transformed 

into voltage. 

• Example: photodiode, 

that converts light into 

electrical signal. 

• A 2D image can be 

acquired using 

mechanical motion in 

two dimensions 



Sensor Strips 

• In-line arrangement of 
sensors in a strip 

• Examples 

• flat bed scanners 

• aerial imaging 

• computed tomography. 

 



Sensor Array 

• Individual sensors are 
arranged in 2D arrays. 

• Examples 
• Digital cameras that use 

CCD arrays 

• Ultrasonic devices. 

• Response of CCD 
sensor is proportional 
to the integral of light 
energy projected onto 
sensor’s surface. 



Image Formation Model 



Image Formation Model 



Image Sampling and Quantization 

• Sensors produce an analog signal output related to the physical phenomenon 

being sensed. 

• An acquired scene is continuous both in terms of coordinates and amplitude 

values. 

• To create a digital image, two stages are followed 

• Sampling  

• Quantization 



Image Sampling and Quantization 

• Sampling is the digitization of the coordinates. 

• Quantization is the digitization of the amplitude. 



Image Sampling and Quantization 

• Sampling and Quantization stages depend on sensor 

arrangement 

• Sensors arrangements vs. digitization factors 

• Single sensor mechanical motion: number of mechanical 

increments. 

• Sensing strip: number of sensors in strip, number of mechanical 

increments. 

• Sensing array: number of sensors establishes sampling limits in 

both directions. 



Image Sampling and Quantization 

• End result depends on both sampling and quantization 

stages. 



Digital Image Representation 



Digital Image Representation 

• A 2D image can be displayed as 

• A surface 

• Visual intensity array 

• Numerical array 



Digital Image Representation 

• Numerical array representation is used for algorithm 

development and processing. 



Digital Image Representation 



Digital Image Representation 

• Definitions: 

• The ratio of maximum intensity to the minimum intensity of an 

imaging system is called the dynamic range. 

• Upper limit is defined by saturation and minimum level is defined by 

noise level. 

• Image contrast is the difference in intensity between the highest 

intensity and the lowest intensity levels in an image. 

 



Spatial Resolution 

• Spatial resolution is a 

measure of the smallest 

discernible detail in the 

image. 

• To be meaningful it needs 

to be stated using units of 

distance. 

• Examples 

• 75 dots per inch 

• 1024x1024 px, field of view 

1000mmx1000mm 

 



Spatial Resolution 

• Effect of decreasing spatial resolution on image quality. 

Original 

 scale 

(1153x1281) 

Rescale  

factor: 1/4 

Rescale  

factor: 1/16 

Rescale  

factor: 1/64 



Intensity Resolution 

• Refers to the smallest discernible change in intensity 

level. 

• Common intensity resolution for generic imagery is 8 bits. 

• In medical applications on can encounter 10, 12 or 16 bit 

resolutions. 



Intensity Resolution 

• Effect of decreasing intensity resolution on image quality. 



Image Interpolation 

• Interpolation is the process of using known data to 

estimate values to unknown locations. 

• In image processing it finds applications in image resizing, 

zooming, geometric transformations and image 

registration. 

• Three popular methods of interpolation are 

• Nearest neighbor 

• Bilinear 

• Bicubic 



Image Interpolation – Nearest 

Neighbor 
• Algorithm 

• Generate output image array 

• Scan each pixel location. 

• Calculate the corresponding spatial coordinates in the original image 

• Find the nearest pixel in original image – nearest neighbor 

• Assign intensity of nearest neighbor to the output pixel 

 



Image Interpolation – Bilinear 

• Algorithm 

• Generate output image array 

• Scan each pixel location. 

• Calculate the corresponding spatial coordinates in the original image 

• Use Manhattan Distance-weighted intensity sum of the 4-neighbors. 

 



Image Interpolation – Bicubic 

• Similar algorithm with one difference 

• Uses the 16-nearest neighbors of a point P(x,y) to 

estimate intensity. 

• The coefficients can be found analytically or 
computationally. 

• Bilinear interpolation is a special case when the upper 
limits of i and j are 1. 



Image Interpolation Methods- 

Comparisons 

Original 

 scale 

(1153x1281) 

Nearest Neighbor,  

Rescale  

factor: 1/16 

Bilinear,  

Rescale  

factor: 1/16 

Bicubic,  

Rescale  

factor: 1/16 
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Lecture Outline 

•Goal: Introduction to basic concepts of image processing 

•Topics: 
•Spatial relationships between pixels 

•Mathematical tools in digital image processing 
 

 



Image file formats 

• Many image formats adhere to the following 
simple model: 
• Header 

• Data (line by line, no breaks between lines). 
 



Image file formats (cont.) 

• Header contains at least: 
• A signature or “magic number”  (i.e., a short 

sequence of bytes for identifying the file format). 

• The width and height of the image. 
 



Common image file formats 

• PGM (Portable Gray Map) 

• PNG (Portable Network Graphics) 

• GIF (Graphic Interchange Format) –  

• JPEG (Joint Photographic Experts Group) 

• TIFF (Tagged Image File Format) 

• FITS (Flexible Image Transport System) 



PGM format 

• A popular format for grayscale images (8 bits/pixel) 

• Closely-related formats are: 

• PBM (Portable Bitmap), for binary images (1 bit/pixel) 

• PPM (Portable Pixelmap), for color images (24 bits/pixel) 

 

•                              ASCII or binary (raw) storage 

ASCII 

Raw 



Reading/Writing PGM images 

(1D array of unsigned char) 

(1D array of unsigned char) 

(2D array of int) 

(2D array of int) 

Use “write” 

Use “read” 



How do I “see” images on my 

computer? 

• Linux:  

• display 

• Gimp 

• ImageJ 

• Windows:  

• Gimp 

• Photoshop 

• Irfanview 

• ImageJ 



How do I convert an image from one 

format to another? 
 

 

 

 

 

• Use “save” or “export” 

option 

 



Spatial Relationships between 

Pixels 
• Pixel neighborhoods 

• Adjacency, connectivity, regions and boundaries 

• Distance measures 

 

 



Pixel neighborhoods 

4-neighbors 8-neighbors 



Adjacency Types 

     1     1     1     0     0     0     0     0 

     1     1     1     0     1     1     0     0 

     1     1     1     0     1     1     0     0 

     1     1     1     0     0     0     1     0 

     1     1     1     0     0     0     1     0 

     1     1     1     0     0     0     1     0 

     1     1     1     0     0     1     1     0 

     1     1     1     0     0     0     0     0 

Pixels that are 8-adjacent  

but not 4-adjacent 



Connectivity 

     1     1     1     0     0     0     0     0 

     1     1     1     0     2     2     0     0 

     1     1     1     0     2     2     0     0 

     1     1     1     0     0     0     3     0 

     1     1     1     0     0     0     3     0 

     1     1     1     0     0     0     3     0 

     1     1     1     0     0     3     3     0 

     1     1     1     0     0     0     0     0 

     1     1     1     0     0     0     0     0 

     1     1     1     0     1     1     0     0 

     1     1     1     0     1     1     0     0 

     1     1     1     0     0     0     1     0 

     1     1     1     0     0     0     1     0 

     1     1     1     0     0     0     1     0 

     1     1     1     0     0     1     1     0 

     1     1     1     0     0     0     0     0 

Original image array 
Connected components 

(4-adjacency) 



Regions 

Original Image Disjoint Regions 

Background 



Boundaries 

Original Image Regions and Boundaries 



Adjacency, Regions, Boundaries 



Adjacency, Regions, Boundaries 



Distance Measures 



Distance Measures 
Euclidean

50 100 150 200

50
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200

City block

50 100 150 200
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100
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200

Chessboard

50 100 150 200
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200

Quasi-Euclidean

50 100 150 200

50

100

150

200



Mathematical Tools in Digital Image 

Processing 
• Array vs. Matrix Operations 

• Linear vs. Non-linear Operations 

• Arithmetic Operations 

• Set and Logical Operations 

• Spatial Operations 

• Vector and Matrix Operations 

• Probabilistic Methods 



Array vs. Matrix Operations 



Linear vs. Nonlinear Operations 



Arithmetic Operations 



Arithmetic Operations 

• Application: Image Averaging 



Arithmetic Operations 

• Application: Shading Correction 



Arithmetic Operations 

• Application: ROI selection 



Set and Logical Operations 



Set and Logical Operations 

• Application: Sets of Coordinates 



Set and Logical Operations 

• Application: Binary Image Regions 



Set and Logical Operations 



Spatial Operations 



Spatial Operations 

• Application: spatial filter - averaging 



Spatial Transformations 



Spatial Transformations 



Spatial Transformations 

Forward mapping 

leaves holes and 

overlaps 

Inverse mapping 

produces complete 

coverage 



Vectors and Matrix Operations 



Vectors and Matrix Operations 



Image Transformations 



Image Transformations 



Image Transformations 



Image Transformations 



Image Transformations 

• Fourier domain filtering example: image restoration. 



Probabilistic Methods 



Probabilistic Methods 

• Example: contrast  estimation by standard deviation. 
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Intensity Transforms and Spatial Filtering

Background

Introduction

This �eld of study deals with image processing in the spatial

domain.

The spatial domain processes can be expressed by

g(x ,y) = T [f (x ,y)].

Main concepts

Intensity Transformations are applied to a single pixel.

Spatial Filtering is applied to the neighborhood of a pixel.
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The spatial domain processes can be expressed by

g(x ,y) = T [f (x ,y)].

Main concepts
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Intensity Transforms and Spatial Filtering

Background

Point Processing

It is applied to single pixels.

Form of intensity mapping (examples: contrast stretching,

thresholding)



Intensity Transforms and Spatial Filtering

Background

Neighborhood processing

Usually applied as spatial �ltering (examples: averaging �lter,

lowpass �lter).
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Basic Intensity Transformation Functions

These transformations are usually of the form s = T (r).

Image Negatives

Log Transformations

Piecewise-linear

Transformation Functions

Contrast stretching
Intensity-level slicing
Bit-level slicing
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Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Image Negatives

Let an image with pixel intensities in [0,L−1].

The negative of an image calculated by s = L−1− r .



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Log Transformations

Calculated by s = c log(1+ r).



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Gamma Transformations

These transformations have

the basic form s = cr γ .



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Gamma Transformations - Results



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Gamma Transformations - Results



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Contrast Stretching

Process that expands the

range of intensity levels in

an image so that it spans

the full range of the

recording medium or

display device.



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Intensity-level Slicing Approaches

1 Display in one value (white)

all intensities of interest and

in another (black) all other

intensities.

2 Set to a �xed value the

desired range of intensities

but leave all other intensities

unchanged.



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Intensity-level Slicing



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Bit-plane Slicing

Generate black and white

images that correspond to

the n-th bit value.

This process can be used to

determine if the number of

bits used for quantization is

adequate.



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Bit-plane Slicing



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Reconstruction after bit-plane slicing

Figure: Reconstructed images using i) bit planes 8 and 7 ii) bitplanes 8,
7 and 6, and iii) bitplanes 8,7, 6, 5.



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Bit-plane Slicing



Intensity Transforms and Spatial Filtering

Basic Intensity Transformation Functions

Piecewise-linear Transformation Functions

Reconstruction after bit-plane slicing

Figure: Reconstructed images using i) bit plane 8, ii) bitplanes 8 and 7,
and iii) bitplanes 8,7 and 6 (left to right).



Intensity Transforms and Spatial Filtering

Histogram Processing

Histogram Processing

Histogram of a digital image
with levels [0,L−1] is a
discrete function h(rk) = nk .

rk : k-th intensity value
nk : number of pixels with
intensity rk .

Normalized histogram:

p(rk) =
nk
MN

.



Intensity Transforms and Spatial Filtering

Histogram Processing

Histogram Processing

We observe that an image with intensities that occupy a large

range in a uniform fashion appears to have high contrast and large

variety of gray tones.

Histogram Examples



Intensity Transforms and Spatial Filtering

Histogram Processing

Histogram Equalization

Let r be the image intensity and s = T (r),0≤ r ≤ L−1 an
intensity mapping. Our requirements are:

1 T (r) be monotonically increasing function in [0,L−1].
2 0≤ T (r)≤ L−1 for 0≤ r ≤ L−1.
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Histogram Processing

Histogram Equalization

Intensity levels of an image can be viewed as random variables

in [0,L−1].

We consider the PDF of r , pr (r) and PDF of s, ps(s).

From probability theory it follows that if pr (r) and T (r) are
known, and T (r) is continuous and di�erentiable over the

range we are working on, then

ps(s) = pr (r)

∣∣∣∣drds
∣∣∣∣ .
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Histogram Processing

Histogram Equalization

Let's consider the mapping s = T (R) = (L−1)
∫ r
0 pr (w)dw

(CDF of r).

Leibnitz's rule gives
ds

dr
=

dT (r)

dr
= (L−1)

d

dr
[
∫ r
0 pr (w)dw ] = (L−1)pr (r).

Hence ps(s) = pr (r)

∣∣∣∣ 1

(L−1)pr (r)

∣∣∣∣= 1

L−1
.

We observe that ps(s) is a uniform PDF.
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Histogram Processing

Histogram Equalization

Discrete variables

For discrete values pr (rk) =
nk

M ·N
, k = 0,1, · · · ,L−1.

Then sk = T (rk) = (L−1)∑
k
i=0 pr (ri ) =

L−1

M ·N ∑
k
i=0 ni .

Trk is called a histogram equalization or histogram

linearization transformation.

The inverse transformation rk = T−1(sk) is used in the

histogram matching technique.
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Results
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Basics of Spatial Filtering

The name "�lter" was adopted from the frequency domain

�ltering (such as lowpass, highpass).

Spatial �ltering may achieve similar results using masks or

kernels.

Spatial �lters are more versatile than their frequency domain

counterparts because they can perform nonlinear operations.



Intensity Transforms and Spatial Filtering

Basics of Spatial Filtering

The Mechanics

A spatial �lter consists of
1 a neighborhood and
2 a prede�ned operation performed on the pixels of the

neighborhood.

Filtering creates a new pixel intensity at the center of the

neighborhood as an output.

Linear �lters perform linear operations, and nonlinear �lters

perform nonlinear operations.
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Basics of Spatial Filtering

The Mechanics

Linear spatial �ltering of an

M×N image f with a m×n
�lter w is given by

g(x ,y) =

a

∑
−a

b

∑
−b

w(s, t)f (x + s,y + t)

where

x ,y vary so that they span the

whole image plane,

m = 2a+1 and n = 2b+1.
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Basics of Spatial Filtering

Spatial Correlation and Convolution

Both are basic concepts in digital image processing.

Correlation is the process of moving a �lter mask over an

image and computing the sum of products at each location as

above.

Convolution uses the same mechanics except that the �lter is

�rst rotated by 180 ◦.
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Basics of Spatial Filtering

Spatial Correlation and Convolution

Correlation of �lter w with function f :
w(x ,y)◦ f (x ,y) = ∑

a
−a ∑

b
−bw(s, t)f (x + s,y + t).

Convolution of �lter w with function f :
w(x ,y)∗ f (x ,y) = ∑

a
−a ∑

b
−bw(s, t)f (x− s,y − t).
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Spatial Correlation and Convolution in 1-D
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Basics of Spatial Filtering

Spatial Correlation and Convolution in 1-D

Signal

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Filter kernel

0.3333 0.3333 0.3333

Output

0.7333 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 1.9333
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Spatial Correlation and Convolution in 2-D
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Basics of Spatial Filtering

Spatial Correlation and Convolution in 2-D

Signal
170 240 10 80 150

230 50 70 140 160

40 60 130 200 220

100 120 190 210 30

110 180 250 20 90

Filter kernel
1 1 1

1 1 1
1 1 1

Correlation Result
690 770 590 610 530

790 1000 980 1160 950

600 990 1170 1350 960

610 1180 1360 1340 770

510 950 970 790 350
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Basics of Spatial Filtering

Vector Representation of Linear Filtering

Another useful representation of the �ltering process is

R = w1z1 +w2z2 + . . .+wmnzmn =
mn

∑
k=1

wkzk = ~wT~z .

~w : vector with �lter coe�cients

~z : corresponding image intensities under the �lter mask.



Intensity Transforms and Spatial Filtering

Basics of Spatial Filtering

Generating Spatial Filter Masks

We select the �lter coe�cients to perform speci�c �ltering

operations, using a sum of products.

For example, to implement a 3×3 averaging �lter, we perform

R = 1
9 ∑

9
i=1 zi . This is equivalent to �ltering with a kernel with

wi = 1
9
.
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Basics of Spatial Filtering

Generating Spatial Filter Masks

In other applications the �lter approximates a 2-D function for

example a Gaussian h(x ,y) = 1
2πσ2 e

− x2+y2

2σ2 with σ : standard

deviation and x ,y ∈ Z .

To generate the �lter we sample the function in the

neighborhood h(−1,−1),h(−1,0), . . . ,h(1,0),h(1,1).

Figure: 7x7 Gaussian kernels with σ = 0.5 and σ = 1.0 (left to right).
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Basics of Spatial Filtering

Generating Spatial Filter Masks

For nonlinear �lters, we need to specify the kernel size and the

operation. For example, maximum, minimum, or median value

applied to the pixel intensities.

Nonlinear �lters can be powerful for tasks such as image

enhancement and noise reduction.
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Smoothing Spatial Filters

These �lters are used for blurring and noise reduction.

Blurring may precede object extraction.

Noise reduction can be achieved by blurring or nonlinear

�ltering.



Intensity Transforms and Spatial Filtering

Smoothing Spatial Filters

Smoothing Linear Filters

The output of such �lters is the average of pixel intensities in

the neighborhood of the mask. They are also called averaging

or lowpass �lters.

Idea is to reduce the "sharp" transitions of intensity caused by

noise.

But blurring can smooth-out the image edges as a side-e�ect.

Figure: Original image, smoothed by Gaussian with σ = 1 and smoothed
by Gaussian with σ = 3.
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Smoothing Spatial Filters

Smoothing Linear Filters

Scenarios

1 Averaging: R = 1
9 ∑

9
i=1 zi also called a box �lter.

2 Weighted average: g(x ,y) =
∑
a
s=−a ∑

b
t=−bw(s,t)f (x+s,y+t)

∑
a
s=−a ∑

b
t=−bw(s,t)

.

Example: Coe�cient weights in 1
16

 1 2 1

2 4 2

1 2 1

 reduce the

edge blurring e�ect.
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Smoothing Spatial Filters

Smoothing Linear Filters

Smoothing before segmentation

Frequently a blurring operation is followed by thresholding to

identify the main objects of an image.

Figure: Original image, smoothed image, and segmentation after
thresholding (left to right).
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Smoothing Spatial Filters

Order Statistics (non-linear) �lters

These �lters rank the pixel intensities in the neighborhood of a

mask and select a percentile p.

p=50%: median �lter
p=0%: minimum �lter
p=100%: maximum �lter

The Median �lter can e�ectively reduce impulse noise.
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Smoothing Spatial Filters

Order Statistics (non-linear) �lters

The Median �lter can e�ectively reduce impulse noise.

Figure: Example of an image corrupted by salt and pepper noise,
result from smoothing �lter, and result from median �lter (left to
right).
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Smoothing Spatial Filters

Order Statistics (non-linear) �lters

The Median �lter can e�ectively reduce impulse noise.

Figure: Example of an image corrupted by salt and pepper noise, result
from smoothing �lter, and result from median �lter (left to right).
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Sharpening Spatial Filters

These �lters aim to highlight transitions in intensity through

di�erentiation.

Typical sharpening �lters are based on �rst- and second-order

derivatives.

Derivatives of digital functions are de�ned in terms of

di�erences
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Sharpening Spatial Filters

Sharpening Spatial Filters

Requirements for 1st
derivative

1 Zero in areas of constant

intensity.

2 Non-zero at the onset of

intensity step or ramp.

3 Non-zero along ramp.

∂ f

∂x
= f (x +1)− f (x).

Requirements for 2nd
derivative

1 Zero in constant areas.

2 Nonzero at onset and end of

intensity step or ramp.

3 Zero along ramps of

constant slope.

∂ 2f

∂x2
= f (x+1)+f (x−1)−2f (x).
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Sharpening Spatial Filters

Requirements for 1st and 2nd derivatives
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Sharpening Spatial Filters

Ramp intensity pro�le example

Real case: CT scan cross-section

Figure: Intensity pro�le along the horizontal axis (in yellow) and gradient
magnitude (in blue).



Intensity Transforms and Spatial Filtering

Sharpening Spatial Filters

Using the 2nd Derivative for Image Sharpening

Here we deal with isotropic �lters that are rotation invariant.

Simplest isotropic derivative operator is the Laplacian

∇
2f =

∂ 2f

∂x2
+

∂ 2f

∂y2
.
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Using the 2nd Derivative for Image Sharpening

Here we deal with isotropic �lters that are rotation invariant.

Simplest isotropic derivative operator is the Laplacian

∇
2f =

∂ 2f

∂x2
+

∂ 2f

∂y2
.
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Sharpening Spatial Filters

Using the 2nd Derivative for Image Sharpening

∇
2f =

∂ 2f

∂x2
+

∂ 2f

∂y2
.

∂ 2f

∂x2
= f (x +1,y) + f (x−1,y)−2f (x ,y).

∂ 2f

∂y2
= f (x ,y +1) + f (x ,y −1)−2f (x ,y).

∇
2f = f (x+1,y)+f (x−1,y)+f (x ,y +1)+f (x ,y−1)−4f (x ,y).
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Sharpening Spatial Filters

Using the 2nd Derivative for Image Sharpening

∇2f =
f (x +1,y) + f (x−1,y) + f (x ,y +1) + f (x ,y −1)−4f (x ,y).

Corresponding �lter kernel:

 0 1 0

1 −4 1

0 1 0


Laplacian can be applied as g(x ,y) = f (x ,y) + c[∇2f (x ,y)].
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Sharpening Spatial Filters

Using the 2nd Derivative for Image Sharpening



Intensity Transforms and Spatial Filtering

Sharpening Spatial Filters

Using the 2nd Derivative for Image Sharpening

Figure: Example of an original image, result of correlation with Laplacian
�lter, image sharpening by subtracting the Laplacian image from the
original (left to right).



Intensity Transforms and Spatial Filtering

Sharpening Spatial Filters

Unsharp Masking and Highboost Filtering

Steps for Unsharp Masking

1 Blur the original image

f (x ,y) to produce f̄ (x ,y).

2 Subtract blurred image from

original (result is mask):

gmask(x ,y) =
f (x ,y)− f̄ (x ,y).

3 Add mask to original image:

g(x ,y) =
f (x ,y) +k ·gmask(x ,y).
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Sharpening Spatial Filters

Unsharp Masking and Highboost Filtering

For k = 1, the above process is called unsharp masking.

For k > 1, the above process is called highboost �ltering.

Unsharp Masking
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Sharpening Spatial Filters

Unsharp Masking and Highboost Filtering

Figure: Example of an original image, Gaussian smoothed, it's g-mask
(top row, left to right), the result of unsharp masking, and the result of
highboost �ltering with k = 1.5 (bottom row, left to right).
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Frequency Domain Interpretation

Use of Frequency Domain

The frequency domain does not display directly the visual
content, but it provides an alternate representation.

We usually visualize the frequency magnitude (spectrum) and
phase angle of DFT.

Visualization of the spectrum can indicate characteristics of
the image.

The frequency, de�ned as rate of change gives a global
information on the image content.
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Basics of Filtering in the Frequency Domain

Frequency Domain Interpretation

Use of Frequency Domain

The frequency domain does not display directly the visual
content, but it provides an alternate representation.

We usually visualize the frequency magnitude (spectrum) and
phase angle of DFT.

Visualization of the spectrum can indicate characteristics of
the image.

The frequency, de�ned as rate of change gives a global
information on the image content.
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Basics of Filtering in the Frequency Domain

Frequency Domain Interpretation

Use of Frequency Domain

Examples

An image with large background areas of uniform intensities
will have few high frequency components.
An image with sharp changes and many boundaries will
produce a spectrum with high frequency coe�cients.
Edge orientation is visible in spectrum.
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Frequency Domain Interpretation

Magnitude and Phase Information

Figure: SEM image example and its frequency spectrum. Observe the
lines in spectrum that correspond to orientation information and the high
frequency components.
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Basics of Filtering in the Frequency Domain

Frequency Domain Interpretation

Magnitude and Phase Information

Figure: Examples of an original image, its DFT magnitude, and its DFT
phase (left to right).
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Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

Introduction to Frequency Domain Filtering

According to convolution theorem, to �lter an image in
frequency domain we i) compute its DFT, ii) multiply with a
�lter function and iii) apply the inverse DFT to the previous
result.

This is also expressed as:

g(x ,y) = F−1[F (u,v) ·H(u,v)],

where f (x ,y) is an M×N image, F (u,v) = F [f (x ,y)] is the
DFT of f (x ,y), H(u,v) is the �lter transfer function, and
g(x ,y) is the �ltered image in the spatial domain.

Next, we discuss how to apply �ltering in the frequency
domain and minimize inaccuracies in calculations.
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Introduction to Frequency Domain Filtering

According to convolution theorem, to �lter an image in
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How to Apply Filtering in Frequency Domain

Introduction to Frequency Domain Filtering

According to convolution theorem, to �lter an image in
frequency domain we i) compute its DFT, ii) multiply with a
�lter function and iii) apply the inverse DFT to the previous
result.

This is also expressed as:

g(x ,y) = F−1[F (u,v) ·H(u,v)],

where f (x ,y) is an M×N image, F (u,v) = F [f (x ,y)] is the
DFT of f (x ,y), H(u,v) is the �lter transfer function, and
g(x ,y) is the �ltered image in the spatial domain.

Next, we discuss how to apply �ltering in the frequency
domain and minimize inaccuracies in calculations.
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Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

The Filter Transfer Function

For the �lter function H(u,v) we choose functions symmetric
at the DC frequency.

So, we need to center F (u,v) as well.

To do this, we use the translation property and multiply
f (x ,y) by (−1)x+y . Then F (u,v) is centered at (M/2,N/2).
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The Filter Transfer Function

For the �lter function H(u,v) we choose functions symmetric
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So, we need to center F (u,v) as well.
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f (x ,y) by (−1)x+y . Then F (u,v) is centered at (M/2,N/2).
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Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

Filter Design

After centering, we design the �lter.

Usually the process involves the selection of frequencies that
we want to let pass, and another range that we want to block.

Low frequencies correspond to the main regions of
approximately uniform intensities.

High frequencies correspond to sharp changes of intensity and
details. Image edges and noise are such examples.
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How to Apply Filtering in Frequency Domain

Filter Design

After centering, we design the �lter.

Usually the process involves the selection of frequencies that
we want to let pass, and another range that we want to block.

Low frequencies correspond to the main regions of
approximately uniform intensities.

High frequencies correspond to sharp changes of intensity and
details. Image edges and noise are such examples.
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Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

Filter Types

There are three basic types of �lters: lowpass, highpass, and
bandpass.

Lowpass �ltering is used to reduce the noise but also reduces
the sharpness of details.

Highpass �ltering is used to enhance edges, corners, and other
details, but will also enhance the noise.

Bandpass/bandreject �ltering is used to remove systemic noise
patterns.
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Basics of Filtering in the Frequency Domain

How to Apply Filtering in Frequency Domain

Examples Filter Types

Figure: Example of a lowpass, a highpass, with 0 DC coe�cient, and a
highpass with non-zero DC coe�cient �lter transfer functions.
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How to Apply Filtering in Frequency Domain

Image Padding

Because of periodicity of DFT, if the image and �lter are not
padded, then the convolution su�ers from the wraparound
error.
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How to Apply Filtering in Frequency Domain

Filter Padding

In addition to the image, we need to pad the �lter function
too.

Remember that padding is applied in the spatial domain, but
�lter design is done in the frequency domain.

How do we handle this?
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How to Apply Filtering in Frequency Domain

Filter Padding Strategy and Pitfall

First thought: create M×N �lter in Fourier domain, apply
IDFT to �lter, pad �lter, then apply DFT.

The above process may introduce discontinuities at the
padding points, therefore in�nite number of harmonics are
introduced (remember the box �lter DFT).

This causes ringing e�ect in the frequency domain.
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Filter Padding Strategy and Pitfall

First thought: create M×N �lter in Fourier domain, apply
IDFT to �lter, pad �lter, then apply DFT.

The above process may introduce discontinuities at the
padding points, therefore in�nite number of harmonics are
introduced (remember the box �lter DFT).

This causes ringing e�ect in the frequency domain.
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How to Apply Filtering in Frequency Domain

Filter Padding Pitfall

To summarize, padding of ideal �lters in the spatial domain
produces ringing e�ect in the frequency domain.
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How to Apply Filtering in Frequency Domain

Filter Padding Solution

We saw that padding of ideal �lters in the spatial domain
produces ringing e�ect in the frequency domain.

To reduce ringing, we can create the �lter in frequency domain
with equal matrix size to the padded image. Then apply
�ltering in the frequency domain.
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How to Apply Filtering in Frequency Domain

Zero-Phase Shift

We usually modify the spectrum of an image for �ltering, but
changes in phase angle should be avoided.
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How to Apply Filtering in Frequency Domain

Zero-Phase Shift

To avoid phase shift, we choose the �lter transfer function to
be real.

Let the DFT of an image F (u,v) = R(u,v)+ jI (u,v), and a
�lter H(u,v).

Filtering then is computed by
F (u,v)H(u,v) = H(u,v)R(u,v)+ jH(u,v)I (u,v).

It is easy to show that the phase of F (u,v)H(u,v) is equal to
the phase of F (u,v).

These �lters are called zero-phase-shift �lters.
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It is easy to show that the phase of F (u,v)H(u,v) is equal to
the phase of F (u,v).

These �lters are called zero-phase-shift �lters.
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Filtering Process in the Frequency Domain

Using the previous results, we apply �ltering in frequency
domain as follows

1 Given image f (x ,y) with size M×N, we append zeros to
image matrix to increase size to 2M×2N. Let padded image
be fp(x ,y).

2 Multiply f (x ,y) by (−1)x+y to shift DC frequency to the
center.

3 Compute DFT: F (u,v) = F [f (x ,y)].
4 Build a real and symmetric 2M×2N �lter transfer function

H(u,v) in the frequency domain. Center function at (M,N).
5 Apply array multiplication: F (u,v) ·H(u,v).
6 Transform back to spatial domain:

gp(x ,y) = Re{F−1[(F (u,v) ·H(u,v)]}(−1)x+y .
7 Extract the top left quadrant of gp(x ,y) to remove padding.

The result is the �ltered image g(x ,y).



Filtering in Frequency Domain

Basics of Filtering in the Frequency Domain

Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

Using the previous results, we apply �ltering in frequency
domain as follows

1 Given image f (x ,y) with size M×N, we append zeros to
image matrix to increase size to 2M×2N. Let padded image
be fp(x ,y).

2 Multiply f (x ,y) by (−1)x+y to shift DC frequency to the
center.

3 Compute DFT: F (u,v) = F [f (x ,y)].
4 Build a real and symmetric 2M×2N �lter transfer function

H(u,v) in the frequency domain. Center function at (M,N).
5 Apply array multiplication: F (u,v) ·H(u,v).
6 Transform back to spatial domain:

gp(x ,y) = Re{F−1[(F (u,v) ·H(u,v)]}(−1)x+y .
7 Extract the top left quadrant of gp(x ,y) to remove padding.

The result is the �ltered image g(x ,y).



Filtering in Frequency Domain

Basics of Filtering in the Frequency Domain

Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

Using the previous results, we apply �ltering in frequency
domain as follows

1 Given image f (x ,y) with size M×N, we append zeros to
image matrix to increase size to 2M×2N. Let padded image
be fp(x ,y).

2 Multiply f (x ,y) by (−1)x+y to shift DC frequency to the
center.

3 Compute DFT: F (u,v) = F [f (x ,y)].

4 Build a real and symmetric 2M×2N �lter transfer function
H(u,v) in the frequency domain. Center function at (M,N).

5 Apply array multiplication: F (u,v) ·H(u,v).
6 Transform back to spatial domain:

gp(x ,y) = Re{F−1[(F (u,v) ·H(u,v)]}(−1)x+y .
7 Extract the top left quadrant of gp(x ,y) to remove padding.

The result is the �ltered image g(x ,y).



Filtering in Frequency Domain

Basics of Filtering in the Frequency Domain

Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

Using the previous results, we apply �ltering in frequency
domain as follows

1 Given image f (x ,y) with size M×N, we append zeros to
image matrix to increase size to 2M×2N. Let padded image
be fp(x ,y).

2 Multiply f (x ,y) by (−1)x+y to shift DC frequency to the
center.

3 Compute DFT: F (u,v) = F [f (x ,y)].
4 Build a real and symmetric 2M×2N �lter transfer function

H(u,v) in the frequency domain. Center function at (M,N).

5 Apply array multiplication: F (u,v) ·H(u,v).
6 Transform back to spatial domain:

gp(x ,y) = Re{F−1[(F (u,v) ·H(u,v)]}(−1)x+y .
7 Extract the top left quadrant of gp(x ,y) to remove padding.

The result is the �ltered image g(x ,y).



Filtering in Frequency Domain

Basics of Filtering in the Frequency Domain

Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

Using the previous results, we apply �ltering in frequency
domain as follows

1 Given image f (x ,y) with size M×N, we append zeros to
image matrix to increase size to 2M×2N. Let padded image
be fp(x ,y).

2 Multiply f (x ,y) by (−1)x+y to shift DC frequency to the
center.

3 Compute DFT: F (u,v) = F [f (x ,y)].
4 Build a real and symmetric 2M×2N �lter transfer function

H(u,v) in the frequency domain. Center function at (M,N).
5 Apply array multiplication: F (u,v) ·H(u,v).

6 Transform back to spatial domain:
gp(x ,y) = Re{F−1[(F (u,v) ·H(u,v)]}(−1)x+y .

7 Extract the top left quadrant of gp(x ,y) to remove padding.
The result is the �ltered image g(x ,y).



Filtering in Frequency Domain

Basics of Filtering in the Frequency Domain

Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

Using the previous results, we apply �ltering in frequency
domain as follows

1 Given image f (x ,y) with size M×N, we append zeros to
image matrix to increase size to 2M×2N. Let padded image
be fp(x ,y).

2 Multiply f (x ,y) by (−1)x+y to shift DC frequency to the
center.

3 Compute DFT: F (u,v) = F [f (x ,y)].
4 Build a real and symmetric 2M×2N �lter transfer function

H(u,v) in the frequency domain. Center function at (M,N).
5 Apply array multiplication: F (u,v) ·H(u,v).
6 Transform back to spatial domain:

gp(x ,y) = Re{F−1[(F (u,v) ·H(u,v)]}(−1)x+y .

7 Extract the top left quadrant of gp(x ,y) to remove padding.
The result is the �ltered image g(x ,y).



Filtering in Frequency Domain

Basics of Filtering in the Frequency Domain

Frequency Domain Filtering Steps

Filtering Process in the Frequency Domain

Using the previous results, we apply �ltering in frequency
domain as follows

1 Given image f (x ,y) with size M×N, we append zeros to
image matrix to increase size to 2M×2N. Let padded image
be fp(x ,y).

2 Multiply f (x ,y) by (−1)x+y to shift DC frequency to the
center.

3 Compute DFT: F (u,v) = F [f (x ,y)].
4 Build a real and symmetric 2M×2N �lter transfer function

H(u,v) in the frequency domain. Center function at (M,N).
5 Apply array multiplication: F (u,v) ·H(u,v).
6 Transform back to spatial domain:

gp(x ,y) = Re{F−1[(F (u,v) ·H(u,v)]}(−1)x+y .
7 Extract the top left quadrant of gp(x ,y) to remove padding.

The result is the �ltered image g(x ,y).



Filtering in Frequency Domain

Basics of Filtering in the Frequency Domain

Frequency Domain Filtering Steps

Example : Filtering Process in the Frequency Domain



Filtering in Frequency Domain

Image Smoothing in the Frequency Domain

Image Smoothing in the Frequency Domain

Sharp intensity changes in the image (for example noise,
edges) corresond to high frequencies of the spectrum.

Smoothing of such details corresponds to attenuation of the
high frequency components.

This process is known as lowpass �ltering.

Widely used lowpass �lter types

Ideal Lowpass Filters
Butterworth Lowpass Filters
Gaussian Lowpass Filters
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Ideal Lowpass Filters

These �lters fully pass all frequencies within a radius D0, and
fully attenuate all frequencies outside of this circle, denoted by
ILPF.

D0 is called cut-o� frequency.

The �lter transfer function is

H(u,v) =

{
1 if D(u,v)≤ D0

0 if D(u,v)> D0.

D(u,v) = [(u−P/2)2+(v −Q/2)2]
1/2

, D0: cut-o� frequency,
(P,Q): padded image matrix size.
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Ideal Lowpass Filters (ILPFs)

Ideal Lowpass Filters

The term ideal is used to show full passing and full
attenuation.

It is a real and symmetric �lter.
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Ideal Lowpass Filter Design

To set D0 we can use power spectrum measurements P(u,v),
computed from the squared magnitude of spectrum
P(u,v) = |F [f (x ,y)]|2.

The total image power is PT = ∑
P−1
u=0 ∑

Q−1
v=0 P(u,v).

Then, a circle with radius D0 encloses a percent of power α

equal to α = 100∑u ∑v P(u,v)/PT , with D(u,v)≤ D0.
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Ideal Lowpass Filters (ILPFs)

Ideal Lowpass Filtering Example

As ILPF radius
increases, smoothing
reduces, and ringing
e�ect reduces.

The spatial kernel
approaches an
impulse.
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Gaussian Lowpass Filters (GLPFs)

Gaussian Filters

The Gaussian lowpass �lter transfer function is de�ned as

H(u,v) = e−D
2(u,v)/2D2

0 .

We can show that the IDFT of a Gaussian is also a Gaussian,
implying that a Gaussian �lter does not cause ringing.
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Gaussian Lowpass Filters (GLPFs)

Gaussian Filtering Example

Gaussian �ltering
produces no ringing
e�ect.
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Butterworth Lowpass Filters

These �lters can be seen as intermediate cases between the
Ideal and Gaussian lowpass �lters.

The transfer function of a BLPF with order n is de�ned as

H(u,v) =
1

1+
[
D(u,v)
D0

]2n .
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Butterworth Lowpass Filtering Example

As BLPF radius
increases, smoothing
reduces.

The spatial kernel
approaches an
impulse.
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Image Smoothing in the Frequency Domain

Butterworth Lowpass Filters (BLPFs)

Butterworth Lowpass Filtering Characteristics

In BLPF, ringing e�ect becomes more intense with increasing
order.
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Image Sharpening in the Frequency Domain

Fine image detail corresponds to high frequencies.

Image sharpening can be achieved by highpass �ltering.

Highpass �ltering attenuates low frequencies and retains high

frequencies.

We can simply obtain a highpass �lter HHP(u,v) as the

complementary of a lowpass �lter HLP(u,v):

HHP(u,v) = 1−HLP(u,v).

We can design highpass �lters in the frequency domain such as

Ideal highpass, Gaussian highpass, Butterworth highpass,

Laplacian highpass, Unsharp masking, and homomorphic

�lters.
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Butterworth Highpass Filters (BHPF)

Butterworth Highpass Filters

A Butterworth highpass �lter transfer function is de�ned as

H(u,v) =
1

1+
[

D0
D(u,v)

]2n .
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Image Sharpening in the Frequency Domain

Butterworth Highpass Filters (BHPF)

Butterworth Highpass Filtering Example

As LBPF radius increases, sharpening decreases.

The spatial kernel approaches an impulse.
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Frequency-Selective Filtering in the Frequency Domain

Frequently, we are interested in �lters that attenuate or pass a

speci�c range of frequencies.

Bandreject and bandpass �lters attenuate or pass speci�c

bands of frequencies.

We can design bandpass �lters based on previous �lter

de�nitions.

Notch �lters pass or attenuate small regions of the frequency

rectangle.
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Frequency-Selective Filtering

Bandpass and Bandreject Filters

Ideal Bandpass Filters

Ideal bandpass �lter:

H(u,v) =

{
1 if D0−W /2≤ D(u,v)≤ D0 +W /2

0 otherwise .

D(u,v) = [(u−P/2)2 + (v −Q/2)2]
1/2

, D0: radial center of

the band, W : width of band (or bandwidth).
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Frequency-Selective Filtering

Bandpass and Bandreject Filters

Butterworth Bandpass Filters

Butterworth bandpass �lter:

H(u,v) =
1

1+
[
D(u,v)2−D0

2

D(u,v)W

]2n .
D(u,v) = [(u−P/2)2 + (v −Q/2)2]

1/2
, D0: radial center of

the band, W : width of band (or bandwidth).
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Frequency-Selective Filtering

Bandpass and Bandreject Filters

Gaussian Bandpass Filters

Gaussian bandpass �lter:

H(u,v) = e−[D(u,v)2−D2
0 ]

2
/(DW )2 .

D(u,v) = [(u−P/2)2 + (v −Q/2)2]
1/2

, D0: radial center of

the band, W : width of band (or bandwidth).
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Frequency-Selective Filtering

Bandpass and Bandreject Filters

Bandreject Filters

A bandreject �lter can be de�ned as the complementary of a

bandpass �lter:

HBR = 1−HBP .
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Frequency-Selective Filtering

Notch Filters

Notch Filters

Notch �lters pass or attenuate signal frequencies in a

neighborhood of a speci�c frequency.

To preserve zero-phase shift property, notch �lters have to be

symmetric.

Usually we design them as products of highpass �lters with

symmetric centers

HNR =
Q

∏
k=1

Hk(u,v)H−k(u,v)

Hk(u,v),H−k(u,v) are highpass �lters with center frequencies

at (uk ,vk) and (u−k ,v−k) respectively.
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To preserve zero-phase shift property, notch �lters have to be

symmetric.

Usually we design them as products of highpass �lters with

symmetric centers

HNR =
Q

∏
k=1

Hk(u,v)H−k(u,v)

Hk(u,v),H−k(u,v) are highpass �lters with center frequencies

at (uk ,vk) and (u−k ,v−k) respectively.
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Notch Filters

Butterworth Notch Reject Filters

These are de�ned by:

HNR =
Q

∏
k=1

1

1+
[

D0k
Dk (u,v)

]2n · 1

1+
[

D0k
D−k (u,v)

]2n
Dk(u,v) = [(u−P/2−uk)2 + (v −Q/2−vk)2]

1/2

D−k(u,v) = [(u−P/2+uk)2 + (v −Q/2+ vk)2]
1/2
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Frequency-Selective Filtering

Notch Filters

Notch Pass Filters

A notch pass �lter can be de�ned as the complementary of a

notch reject �lter

HNP = 1−HNR .
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Notch Filters

Notch Reject Filtering Example

Image noise forming a

Moiré pattern.

Magnitude spectrum

of the original image.

Butterworth notch

reject �lter matching

the noise pattern.

Filtering removes

noise.



Filtering in Frequency Domain

Frequency-Selective Filtering

Notch Filters

Notch Reject Filtering Example

Image noise forming a

Moiré pattern.

Magnitude spectrum

of the original image.

Butterworth notch

reject �lter matching

the noise pattern.

Filtering removes

noise.



Filtering in Frequency Domain

Frequency-Selective Filtering

Notch Filters

Notch Reject Filtering Example

Image noise forming a
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Image noise forming a

Moiré pattern.

Magnitude spectrum

of the original image.

Butterworth notch

reject �lter matching

the noise pattern.

Filtering removes

noise.
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Forward 2-D DFT

Forward 2-D DFT

F (u,v) =
M−1

∑
x=0

N−1

∑
y=0

f (x ,y)e−j2π( uxM + vy
N )

u = 0,1, ...,M−1,v = 0,1, ...,N−1.
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Implementation Topics

Separability of 2-D DFT

Separable 2-D DFT

DFT kernel is separable, therefore

F (u,v) =
M−1

∑
x=0

N−1

∑
y=0

f (x ,y)e−j2π( uxM )e−j2π( vyN )

=
M−1

∑
x=0

e−j2π( uxM )
N−1

∑
y=0

f (x ,y)e−j2π( vyN )

=
M−1

∑
x=0

e−j2π( uxM )F (x ,v).
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Implementation Topics

Separability of 2-D DFT

Separable 2-D DFT

Separable DFT stages

1 We apply 1-D Fourier transform applied to rows yielding

F (x ,v) that has N coe�cients for each row.

2 We yield F (u,v) by applying Fourier transform to the columns

of F (x ,v).

This property is used for fast implementations of DFT.
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Implementation Topics

Separability of 2-D DFT

Separable 2-D DFT

Separable DFT stages

1 We apply 1-D Fourier transform applied to rows yielding

F (x ,v) that has N coe�cients for each row.

2 We yield F (u,v) by applying Fourier transform to the columns

of F (x ,v).

This property is used for fast implementations of DFT.
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Using DFT for IDFT Computation

Using DFT for IDFT Computation

Based on the 2-D IDFT de�nition we have that

f (x ,y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

F (u,v)e j2π( xuM + yv
N )

Now we take the conjugate and solve for f (x ,y)

f ∗(x ,y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

F ∗(u,v)e−j2π( xuM + yv
N )

MNf ∗(x ,y) =
M−1

∑
u=0

N−1

∑
v=0

F ∗(u,v)e−j2π( xuM + yv
N )

MNf ∗(x ,y) = F [F ∗(u,v)]

f (x ,y) =
1

MN
{F [F ∗(u,v)]}∗
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Based on the 2-D IDFT de�nition we have that
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∑
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N )

Now we take the conjugate and solve for f (x ,y)
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∑
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N−1
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N )

MNf ∗(x ,y) =
M−1

∑
u=0

N−1

∑
v=0

F ∗(u,v)e−j2π( xuM + yv
N )

MNf ∗(x ,y) = F [F ∗(u,v)]

f (x ,y) =
1

MN
{F [F ∗(u,v)]}∗
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Filtering in the Frequency Domain

Preliminary Concepts

Fourier Series

A function f (t) of a continuous variable t with period T can

be expressed as the sum of sines and cosines multiplied with

appropriate coe�cients.

This sum is known as Fourier expansion of f (t) and is given by

f (t) =
∞

∑
n=−∞

cne
j 2πn

T t .

The coe�cients cn are given by:

cn =
1

T

∫ T/2

−T/2
f (t)e−j

2πn
T tdt.
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Filtering in the Frequency Domain

Preliminary Concepts

Impulses and Sifting Property

Unit Impulse

A unit impulse δ (t) of a continuous variable t at t = 0 is

de�ned as:

δ (t) =

{
∞ if t = 0

0 otherwise

with ∫
∞

−∞

δ (t)dt = 1.
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Filtering in the Frequency Domain

Preliminary Concepts

Impulses and Sifting Property

Sifting Property

For a function f (t) that is continuous at t = 0, we have that∫
∞

−∞

f (t)δ (t)dt = f (0)

In general, for an impulse at an arbitrary point t = t0 we have

that ∫
∞

−∞

f (t)δ (t− t0)dt = f (t0)
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Preliminary Concepts

Impulses and Sifting Property

Discrete Case

Impulse:

δ (x) =

{
1 if t = 0

0 otherwise

with
∞

∑
x=−∞

δ (x) = 1.

Sifting property:

∞

∑
x=−∞

f (x)δ (x) = f (0)

In general,
∞

∑
x=−∞

f (x)δ (x−x0) = f (x0)
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Preliminary Concepts

Impulses and Sifting Property

Discrete Case, Impulse Train

Impulse train is the sum of in�nitely many periodic impulses

with period ∆T :

s∆T (t) =
∞

∑
n=−∞

δ (t−n∆T )
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Preliminary Concepts

The Fourier Transform of Functions of One Continuous

Variable

The Fourier transform of function f (t) denoted by F{f (t)} is
given by

F{f (t)}=
∫

∞

−∞

f (t)e−j2πµtdt.

F{f (t)}= F (µ).

Inverse Transform: f (t) = F−1{F (µ)}=
∫

∞

−∞
F (µ)e j2πµtdµ.

We can use Euler's formula to write the forward transform as

F (µ) =
∫

∞

−∞

f (t)[cos(2πµt)− j sin(2πµt)]dt.
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Preliminary Concepts

Fourier Transform of a Pulse Function

F (µ) =
∫

∞

−∞

f (t)e−j2πµtdt =
∫ W /2

−W /2
Ae−j2πµtdt

=
−A
j2πµ

[e−j2πµt ]
W /2

−W /2 =
−A
j2πµ

[e−jπµW − e jπµW ]

=
A

j2πµ
[e jπµW − e−jπµW ] =

A

πµ
sin(πµW )

= AW
sin(πµW )

πµW
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Preliminary Concepts

Fourier Transform of a Pulse Function

Because the Fourier transform F (µ) of a function f (t) is

complex in general, often times we use its magnitude |F (µ)|
for display purposes.

The magnitude of Fourier transform |F (µ)| is called Fourier

spectrum or frequency spectrum.

For the case of a pulse function we have that

|F (µ) = AW

∣∣∣∣sin(πµW )

πµW

∣∣∣∣
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Preliminary Concepts

Fourier Transform of a Unit Impulse

Impulse at origin

F (µ) =
∫

∞

−∞

δ (t)e−j2πµtdt

=
∫

∞

−∞

e−j2πµt
δ (t)dt

= e−j2πµ0

= 1.

Impulse at t0

F (µ) =
∫

∞

−∞

δ (t− t0)e−j2πµtdt

=
∫

∞

−∞

e−j2πµt
δ (t− t0)dt

= e−j2πµt0

= cos(2πµt0)− j sin(2πµt0)
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Preliminary Concepts

Fourier Transform of an Impulse Train

Fourier series expansion

Let an impulse train s∆T (t) with period ∆T ,

s∆T (t) = ∑
∞
n=−∞ δ (t−n∆T ).

Because it is periodic, it can be represented by Fourier series:

s∆T (t) =
∞

∑
n=−∞

cne
j 2πn

∆T t ,cn =
1

∆T

∫ ∆T/2

−∆T/2
S∆T (t)e−j

2πn
∆T tdt

For one period we have that,

cn =
1

∆T

∫ ∆T/2

−∆T/2
δ (t)e−j

2πn
∆T tdt =

1

∆T
.

The Fourier series becomes : s∆T (t) = 1
∆T ∑

∞
n=−∞ e j

2πn
∆T t .
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Preliminary Concepts

Fourier Transform of an Impulse Train

Fourier Transform of series

Now, we �nd F{s∆T (t)}= S(µ).

Using the previous result we have that

S(µ) = F{ 1

∆T

∞

∑
n=−∞

e j
2πn
∆T t}

=
1

∆T

∞

∑
n=−∞

F{e j
2πn
∆T t}

=
1

∆T

∞

∑
n=−∞

δ (µ− n

∆T
)}.

Therefore, the Fourier transform of an impulse train is an

impulse train with period reciprocal to the original one.
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Preliminary Concepts

Convolution

The convolution of two functions f (t) and h(t) is given by

f (t)∗h(t) =
∫

∞

−∞

f (τ)h(t− τ)dτ

The Fourier transform of the convolution is

F{f (t)∗h(t)}=
∫

∞

−∞

[∫
∞

−∞

f (τ)h(t− τ)dτ

]
e−j2πµtdt

=
∫

∞

−∞

f (τ)

[∫
∞

−∞

h(t− τ)e−j2πµtdt

]
dτ

=
∫

∞

−∞

f (τ)
[
H(µ)e−j2πµτ

]
dτ

= H(µ)
∫

∞

−∞

f (τ)e−j2πµτdτ

= H(µ)F (µ)
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Preliminary Concepts

Convolution

Therefore we have that

F{f (t)∗h(t)}= F{f (t)}F{h(t)}
= H(µ)F (µ)

This result tells us the convolution in the spatial domain is

equivalent to the product in the frequency domain.

Convolution Theorem

The previous result can be symbolized as:

f (t)∗h(t)⇔ H(µ)F (µ).

We can also show that f (t)h(t)⇔ H(µ)∗F (µ).

The above two expressions form the Convolution Theorem.
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Fourier Transform of Sampled Functions

Sampling

The analog signal acquired by imaging sensors is converted to

digital by the processes of sampling and quantization.

Let f (t) be a continuous signal that we want to sample at

uniform intervals ∆T .

The sampling process can be represented by multiplication of

f (t) with an equally spaced impulse train. So the sampled

function f̂ is given by:

f̂ (t) = f (t)s∆T (t) =
∞

∑
n=−∞

f (t)δ (t−n∆T )

The value fk at each sampling point k is given by:

fk =
∫

∞

−∞
f (t)δ (t−k∆T )dt = f (k∆T ), for k = 1,2, ...
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Sampling

The Sampling Process

Continuous function,

impulse train, sampled

function, and sampled

values (top to bottom).



institution-logo-�lename

Filtering in the Frequency Domain

Fourier Transform of Sampled Functions

Fourier Transform of Sampled Functions

The Fourier transform of the sampled function f̂ (t) is

F̂ (µ) = F{f̂ (t)}
= F{f (t)s∆T}
= F (µ)∗S(µ)
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Fourier Transform of Sampled Functions

F̂ (µ) = F (µ)∗S(µ)

=
∫

∞

−∞

F (τ)S(µ− τ)dτ

=
∫

∞

−∞

F (τ)

[
∞

∑
n=−∞

1

∆T
δ (µ− τ− n

∆T
)

]
dτ

=
1

∆T

∫
∞

−∞

F (τ)

[
∞

∑
n=−∞

δ (µ− τ− n

∆T
)

]
dτ

=
1

∆T

∞

∑
n=−∞

∫
∞

−∞

F (τ)δ (µ− τ− n

∆T
)dτ

=
1

∆T

∞

∑
n=−∞

F (µ− n

∆T
)
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Fourier Transform of Sampled Functions

The previous result shows that the Fourier transform of a

sampled function F̂ (µ) is a sequence of repeated copies of

F (µ).

These copies are spaced 1
∆T apart.

Because F (µ) is continuous, F̂ (µ) is also continuous.

The quantity 1
∆T is the sampling rate.
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Fourier Transform of Sampled Functions

The Sampling Theorem

We showed that the Fourier transform of a sampled function is

a periodic sequence of the Fourier transforms of the

continuous function that are spaced 1
∆T apart.

We can reconstruct the original signal if we can isolate one full

period.

This is guaranted when 1
∆T > 2µmax , where µmax is the

maximum frequency.

Theorem (Nyquist Theorem)

A continuous, band-limited function can be recovered completely by

its samples, if the samples are acquired at a rate that exceeds twice

the highest frequency coe�cient of the function.
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Fourier Transform of Sampled Functions

The Sampling Theorem

The Sampling Process

Fourier Transform of a

band-limited function,

transform of the

corresponding sampled

function with

over-sampling, critical

sampling, and

under-sampling (top to

bottom).
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Fourier Transform of Sampled Functions

The Sampling Theorem

Original Signal Recovery

Ideal lowpass �lter: H(µ) ={
∆T −µmax ≤ µ ≤ µmax

0 otherwise

Multiply: F (µ) = H(µ)F̃ (µ)

Inverse Fourier Transform:

f (t) =
∫

∞

−∞
F (µ)e j2πµtdµ
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Fourier Transform of Sampled Functions

Aliasing

The Nyquist theorem

determines the sampling rate

for complete signal recovery

to be 1
∆T > 2µmax .

When the rate is smaller

than required, successive

periods will overlap.

The recovered function will

be corrupted by the

frequency aliasing e�ect.
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Fourier Transform of Sampled Functions

Aliasing

Reducing Aliasing E�ect

Aliasing e�ect is almost unavoidable, because when we limit

the duration of a function, we introduce an in�nite number of

frequency components.

A way to reduce this e�ect is by smoothing the input signal to

attenuate the higher frequences, a process known as

anti-aliasing. This process has to be applied before sampling.
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The Discrete Fourier Transform (DFT) of One Variable

Fourier Transform of Sampled Function

We showed before that the Fourier transform of the sampled

function f̂ (t) is

F̂ (µ) = F{f̂ (t)}
= F{f (t)s∆T}
= F (µ)∗S(µ)
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The Discrete Fourier Transform (DFT) of One Variable

Fourier Transform of Sampled Function

We also showed that the transform F̂ (µ) of a sampled, and

band-limited function f̂ (t) with range (−∞,∞) is given by

F̂ (µ) = F (µ)∗S(µ)

=
1

∆T

∞

∑
n=−∞

F (µ− n

∆T
).

But this expression does not include f̂ (t).

Next, we will express F̂ (µ) in terms of f̂ (t).
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The Discrete Fourier Transform (DFT) of One Variable

Obtaining the Discrete Fourier Transform

Continuous Fourier transform of f̂ (t)

F̂ (µ) =
∫

∞

−∞

f̂ (t)e−j2πµtdt

=
∫

∞

−∞

∞

∑
n=−∞

f (t)δ (t−n∆T )e−j2πµtdt

=
∞

∑
n=−∞

∫
∞

−∞

f (t)δ (t−n∆T )e−j2πµtdt

=
∞

∑
n=−∞

fne
−j2πµn∆T

Although fn is discrete, F̂ (µ) is continuous and periodic with

period 1/∆T .

We need one period to characterize F̂ (µ).
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The Discrete Fourier Transform (DFT) of One Variable

Obtaining the Discrete Fourier Transform

We assume that we sample F̂ (µ) between 0 and 1/∆T using

M points.

The sampling frequencies would then be µ = m
M∆T for

m = 0,1, ...,M−1.

From the previous result we have that

Fm =
∞

∑
n=−∞

fne
−j2πµn∆T

=
M−1

∑
n=0

fne
−j2π

m
M∆T n∆T

=
M−1

∑
n=0

fne
−j2π

m
M n,m = 0,1, ...,M−1
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The Discrete Fourier Transform (DFT) of One Variable

Discrete Fourier Transform Pair

The expression

Fm =
M−1

∑
n=0

fne
−j2π

m
M n,m = 0,1, ...,M−1.

is the Discrete Fourier Transform (DFT).

This is a transformation from a set {fn} of M samples to

another set {Fm} of M samples.

The Inverse Discrete Fourier Transform is de�ned as

fn =
1

M

M−1

∑
m=0

Fme
j2π

m
M n,m = 0,1, ...,M−1.
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The Discrete Fourier Transform (DFT) of One Variable

Discrete Fourier Transform Pair

Using functional notation we can write the DFT pair as

F (u) =
M−1

∑
x=0

f (x)e−j2π
u
M x ,u = 0,1, ...,M−1.

and

f (x) =
1

M

M−1

∑
u=0

F (u)e j2π
u
M x ,x = 0,1, ...,M−1.
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The Discrete Fourier Transform (DFT) of One Variable

Discrete Fourier Transform Considerations

Forward and inverse DFT are periodic.

F (u) = F (u+kM), f (x) = f (x +kM)

Convolution

f (x)∗h(x) =
M−1

∑
m=0

f (m)h(x−m)

The convolution is periodic, also referred to as circular
convolution.
The convolution theorem holds for discrete variables.
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The Discrete Fourier Transform (DFT) of One Variable

Relation between the Sampling and Frequency Intervals

Let f (t) be a function sampled at M points that are ∆T units

apart.

The produced sampled signal {f (x)} has duration
T = M ·∆T .

As we showed before, the spacing in the frequency domain is

δu = 1
M·∆T = 1

T .

The range of the frequency spectrum is Ω = M · 1
M·∆T = 1

∆T .

Observe the inverse relationships between the sampling and

frequency intervals.
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Extension to Functions of Two Variables

2-D Impulse and Sifting Property

Impulse De�nition

A unit impulse δ (t,z) of continuous variables t and z is

de�ned as:

δ (t,z) =

{
∞ if t = z = 0

0 otherwise

with ∫
∞

−∞

∫
∞

−∞

δ (t,z)dtdz = 1.
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Extension to Functions of Two Variables

2-D Impulse and Sifting Property

Sifting Property

For a function f (t,z) that is continuous at t = 0, z = 0, we

have that ∫
∞

−∞

∫
∞

−∞

f (t,z)δ (t,z)dtdz = f (0,0)

In general, for an impulse at an arbitrary point (t0,z0) we have

that ∫
∞

−∞

∫
∞

−∞

f (t,z)δ (t− t0,z− z0)dtdz = f (t0,z0)
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Extension to Functions of Two Variables

Impulses and Sifting Property

Discrete Case

Impulse:

δ (x ,y) =

{
1 if x = y = 0

0 otherwise

with
∞

∑
x=−∞

∞

∑
y=−∞

δ (x ,y) = 1.



Filtering in the Frequency Domain

Extension to Functions of Two Variables

Impulses and Sifting Property

Discrete Case

Sifting property:

∞

∑
x=−∞

∞

∑
y=−∞

f (x ,y)δ (x ,y) = f (0,0)

In general,

∞

∑
x=−∞

∞

∑
y=−∞

f (x ,y)δ (x−x0,y −y0) = f (x0,y0)
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Extension to Functions of Two Variables

2-D Continuous Fourier Transform Pair

The Fourier transform of a continuous function f (t,z) is

F{f (t,z)}= F (µ,ν) =
∫

∞

−∞

∫
∞

−∞

f (t,z)e−j2π(µt+νz)dtdz .

Inverse Transform:

f (t,z) = F−1{F (µ,ν)}=
∫

∞

−∞

∫
∞

−∞

F (µ,ν)e j2π(µt+νz)dµdν .

We can use Euler's formula to write the forward transform as

F (µ,ν) =
∫

∞

−∞

∫
∞

−∞

f (t,z)[cos(2π(µt + νz))− j sin(2π(µt + νz))]dtdz .
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Extension to Functions of Two Variables

2-D Continuous Fourier Transform Pair

Fourier Transform of a 2-D Box

Function: F (µ,ν) =
∫ T/2
−T/2

∫ Z/2
−Z/2Ae

−j2π(µt+νz)dtdz .

Spectrum: |F (µ,ν)|= ATZ
∣∣∣ sin(πµT )

πµT

∣∣∣ ∣∣∣ sin(πνZ)
πνZ

∣∣∣ .
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

We �rst de�ne the 2-D impulse train:

s∆T∆Z (t,z) =
∞

∑
m=−∞

∞

∑
n=−∞

δ (t−m∆T )δ (z−n∆Z ),

where ∆T and ∆Z are sampling intervals in t and z .

Figure: 2-D impulse train.
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

We multiply our signal with the impulse train to produce the

sampled function.

f̂ (t,z) = f (t,z)s∆T∆Z (t,z)

=
∞

∑
m=−∞

∞

∑
n=−∞

f (t,z)δ (t−m∆T )δ (z−n∆Z )

The question is how to recover f (t,z) after the sampling

process from f̂ (t,z).
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

Band-limited 2-D Function

A function f (t,z) is band-limited if its Fourier transform

F (µ,ν) satis�es the following:

|F (µ,ν)|= 0, for |µ|> µmax and |ν |> νmax

Theorem (2-D Sampling Theorem)

A continuous, band-limited function f (t,z) can be recovered with

no error after sampling with intervals ∆T and ∆Z if

1

∆T
> 2µmax and

1

∆Z
> 2νmax
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Extension to Functions of Two Variables

2-D Sampling and 2-D Sampling Theorem

2-D Over- and Under-sampling



Filtering in the Frequency Domain

Extension to Functions of Two Variables

Aliasing in Images

As in 1-D case, aliasing happens when the conditions of

sampling theorem are violated.

The condition of a band-limited function is violated when we
limit the duration of a function in original space.

Some aliasing is present in all digital images as in sampled 1-D
functions.

Another source of aliasing is the sampling interval.

Two types: spatial aliasing, or temporal aliasing.
Spatial aliasing is caused by undersampling in spatial domain.
Temporal aliasing is caused by undersampling in temporal
domain.
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Extension to Functions of Two Variables

Aliasing in Images

Anti-aliasing Solutions

Aliasing can be reduced by de-focusing the sensed scene before

it is digitized.

Post-digitization "anti-aliasing" �lters blur the image to reduce

the aliasing caused by resampling.

Some digital cameras have true anti-aliasing �lters, either in

the lens, or on sensor's surface.
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Extension to Functions of Two Variables

Aliasing in Images

Aliasing and Interpolation

Aliasing can be caused when we resample by pixel replication,

mainly during image shrinking.

This is because we increase the sampling interval by skipping

rows and columns.

One solution is to smooth the image before interpolation.

Other manifestations of aliasing are jaggies (blocky edges) and

Moire patterns.



Filtering in the Frequency Domain

Extension to Functions of Two Variables

Aliasing in Images

Example

Figure: Original image, under- and over-sampled back to original size
using pixel-replication with aliasing artifacts, use of blurring before
undersampling reduces aliasing (left to right).



Filtering in the Frequency Domain

Extension to Functions of Two Variables

2-D Discrete Fourier Transform and Its Inverse

2-D Discrete Fourier Transform (DFT) Pair

Forward 2-D DFT

F (u,v) =
M−1

∑
x=0

N−1

∑
y=0

f (x ,y)e−j2π( ux
M + vy

N )

u = 0,1, ...,M−1,v = 0,1, ...,N−1.

Inverse 2-D DFT

f (x ,y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

F (u,v)e j2π( ux
M + vy

N )

x = 0,1, ...,M−1,y = 0,1, ...,M−1.
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Properties of 2-D Discrete Fourier Transform

Periodicity

Sampling and frequency intervals

Let f (x ,y) be a sampled image with M×N samples in

dimensions t and z .

Let ∆T , ∆Z be the sampling intervals in t and z respectively.

Then the frequency intervals are given by

∆u =
1

M ·∆T

and

∆v =
1

N ·∆Z
.
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Properties of 2-D Discrete Fourier Transform

Periodicity

Periodicity

The 2-D DFT and its inverse are in�nitely periodic in u and v

F (u,v) = F (u+k1M,v)

= F (u,v +k2N)

= F (u+k1M,v +k2N)

f (x ,y) = f (x +k1M,y)

= f (x ,y +k2N)

= f (x +k1M,y +k2N)



2-D Discrete Fourier Transform Properties

Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Translation

Translation in spatial domain

f (x−x0,y −y0)⇔ F (u,v)e−j2π(
x0u
M +

y0u
N )

Translation in frequency domain

f (x ,y)e j2π(
xu0
M +

yu0
N )⇔ F (u−u0,v −v0)
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Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Rotation

Rotating f (x ,y) by angle θ0 rotates F (u,v) by angle θ0

f (r ,θ + θ0)⇔ F (ω,φ + θ0).

where x = r cosθ , y = r sinθ and u = ω cosφ , v = ω sinφ .
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Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Using Shifting and Periodicity Properties

For visualization and �ltering purposes we may shift the

spectrum by half a period.

It follows from the translation properties that

f (x ,y)e j2π(
xu0
M +

yu0
N )⇔ F (u−u0,v −v0).
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Properties of 2-D Discrete Fourier Transform

Translation and Rotation

Using Shifting and Periodicity Properties

If we set (u0,v0) = (M/2,N/2) we have that

f (x ,y)e j2π( xM/2
M + yN/2

N )⇔ F (u−M/2,v −N/2)

f (x ,y)e jπ(x+y)⇔ F (u−M/2,v −N/2)

f (x ,y)(−1)(x+y)⇔ F (u−M/2,v −N/2)

In this way, the coe�cients are shifted so that F (0,0) appears

at the (M/2,N/2).
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Properties of 2-D Discrete Fourier Transform

Separability

Forward 2-D DFT

Forward 2-D DFT

F (u,v) =
M−1

∑
x=0

N−1

∑
y=0

f (x ,y)e−j2π( uxM + vy
N )

u = 0,1, ...,M−1,v = 0,1, ...,N−1.
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Properties of 2-D Discrete Fourier Transform

Separability

Separable DFT

DFT kernel is separable, therefore

F (u,v) =
M−1

∑
x=0

N−1

∑
y=0

f (x ,y)e−j2π( uxM )e−j2π( vyN )

=
M−1

∑
x=0

e−j2π( uxM )
N−1

∑
y=0

f (x ,y)e−j2π( vyN )

=
M−1

∑
x=0

e−j2π( uxM )F (x ,v).
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Properties of 2-D Discrete Fourier Transform

Separability

Separable DFT

Separable DFT stages

1 We apply 1-D Fourier transform applied to rows yielding

F (x ,v) that has N coe�cients for each row.

2 We yield F (u,v) by applying Fourier transform to the columns

of F (x ,v).

This property is used for fast implementations of DFT.
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Properties of 2-D Discrete Fourier Transform

Symmetry

Symmetry Basics

Any real or complex function w(x ,y) can be written as the

sum of an even and odd part, we(x ,y) and wo(x ,y)

w(x ,y) = we(x ,y) +wo(x ,y).

Even (or symmetric) and odd (or antisymmetric) parts are

de�ned as

we(x ,y) = w(x ,y)+w(−x ,−y)
2

and wo(x ,y) = w(x ,y)−w(−x ,−y)
2
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Properties of 2-D Discrete Fourier Transform

Symmetry

Symmetry Basics

It follows that

we(x ,y) = we(−x ,−y) and wo(x ,y) =−wo(−x ,−y).

Because we deal with positive indices the above de�nitions

become

we(x ,y) = we(M−x ,M−y) and

wo(x ,y) =−wo(N−x ,N−y).
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Properties of 2-D Discrete Fourier Transform

Symmetry

Symmetry Properties for DFT

If f (x ,y) is real then its Fourier transform is conjugate

symmetric

F ∗(u,v) = F (−u,−v)

If f (x ,y) is imaginary then its Fourier transform is conjugate

antisymmetric

F ∗(u,v) =−F (−u,−v)

f (x ,y) is real and even ⇔ F (u,v) is real and even.

f (x ,y) is real and odd ⇔ F (u,v) is imaginary and odd.
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Properties of 2-D Discrete Fourier Transform

Symmetry

More Symmetry Properties
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Properties of 2-D Discrete Fourier Transform

Linearity and Multiplication

Linearity and Multiplication

Linearity

F [af (x ,y) +bg(x ,y)] = aF [f (x ,y)] +bF [g(x ,y)]

Multiplication does not hold

F [f (x ,y) ·g(x ,y)] 6= F [f (x ,y)] ·F [g(x ,y)]
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Properties of 2-D Discrete Fourier Transform

Average Value

The DC Coe�cient

When we set (u,v) = (0,0), then F (u,v) becomes

F (0,0) =
M−1

∑
x=0

N−1

∑
y=0

f (x ,y)

= MNf̂ (x ,y).

where f̂ (x ,y) is the mean of f (x ,y).

Therefore, |F (0,0)|= MN|f̂ (x ,y)|.
Because the frequency indices are zero, F (0,0) is also called

the DC coe�cient.
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Properties of 2-D Discrete Fourier Transform

Average Value

The DC Coe�cient

The term F (0,0) is usually the largest component of the

spectrum by a large margin.

To compress the range of Fourier coe�cients, we usually apply

log transform to display the Fourier spectrum.

Another step is to shift the spectrum so that the DC

coe�cient appears at (M/2,N/2).
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Properties of 2-D Discrete Fourier Transform

Magnitude and Phase of DFT

Magnitude and Phase of DFT

2-D DFT in polar form

The Fourier transform of a function is complex and can be

written as

F (u,v) = |F (u,v)|e jφ(u,v).

The magnitude |F (u,v)| is called the Fourier spectrum or

frequency spectrum calculated by

|F (u,v)|=
[
Re(F (u,v))2 + Im(F (u,v))2

]1/2
.

The phase angle φ(u,v) is given by

φ(u,v) = arctan
[
Im(F (u,v))
Re(F (u,v))

]
.
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Properties of 2-D Discrete Fourier Transform

Magnitude and Phase of DFT

Power Spectrum

The power spectrum |F (u,v)|2 is given by

|F (u,v)|2 =
[
Re(F (u,v))2 + Im(F (u,v))2

]
.
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Properties of 2-D Discrete Fourier Transform

Magnitude and Phase of DFT

Magnitude and Phase Visualization

Figure: Original image, its spectrum (top row, left to right) its centered
spectrum, and display of centered spectrum after log intensity transform
(bottom row, left to right).
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Properties of 2-D Discrete Fourier Transform

Magnitude and Phase of DFT

Magnitude and Phase Information

Figure: Examples of an original image, its DFT magnitude, and its DFT
phase (left to right).



2-D Discrete Fourier Transform Properties

Properties of 2-D Discrete Fourier Transform

Magnitude and Phase of DFT

Magnitude and Phase Information

Figure: Original image, its phase, reconstructed with phase only (top
row, left to right), reconstructed with magnitude only, reconstructed
using phase from face image and magnitude from rectangle image,
reconstructed using phase from rectangle image and magnitude from face
image (bottom row, left to right).
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution

We can extend the �ndings for the 1-D DFT to 2-D.

Circular convolution is de�ned by:

f (x ,y)∗h(x ,y) =
M−1

∑
m=0

N−1

∑
n=0

f (m,n)h(x−m,y −n)

where x = 0, ...,M−1 and y = 0, ...,N−1.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem

We saw that the convolution theorem is applicable to discrete

variables as well.

This can be expressed as

f (x ,y)∗h(x ,y)⇔ F (u,v) ·H(u,v)

and

f (x ,y) ·h(x ,y)⇔ F (u,v)∗H(u,v)
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem Application

For an image M and a spatial �lter S , we can compute F ∗S
as follows:

1 Pad S with 0s so that it is the same size as M. Denote padded
S by S ′.

2 Compute DFT's of M and S :

F (M) and F (S ′).

3 Multiply F (M) and F (S ′):

F (M) ·F (S ′).

4 Compute inverse DFT of F (M) and F (S ′):

F−1(F (M) ·F (S ′)).
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2-D Convolution Theorem
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem Application

For an image M and a spatial �lter S , we can compute F ∗S
as follows:
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D Convolution Theorem Application

For an image M and a spatial �lter S , we can compute F ∗S
as follows:

1 Pad S with 0s so that it is the same size as M. Denote padded
S by S ′.

2 Compute DFT's of M and S :

F (M) and F (S ′).

3 Multiply F (M) and F (S ′):

F (M) ·F (S ′).

4 Compute inverse DFT of F (M) and F (S ′):

F−1(F (M) ·F (S ′)).
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Wraparound Error

The process we

described corresponds

to non-periodic

functions (left

column).

But we must consider

the signal periodicity

assumption in DFT

de�nition and use.

Then the convolution

produces erroneous

results, caused by the

wraparound error.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Adressing Wraparound Error

We can avoid the wraparound error by appending 0s to both

functions (zero padding) so they have length P such that

P ≥ A+B−1.

Because many DFT implementations are designed for even

matrix sizes, we can pick P as the smallest even number

satisfying the above condition.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Adressing Wraparound Error: Frequency Leakage

If the signals are not zero at the end of sampling interval, then

zero padding introduces a discontinuity represented by in�nite

frequencies in Fourier domain.

This e�ect is called frequency leakage that appears as blocky

e�ect on images.
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Adressing Wraparound Error: Frequency Leakage

If the signals are not zero at the end of sampling interval, then

zero padding introduces a discontinuity represented by in�nite

frequencies in Fourier domain.

This e�ect is called frequency leakage that appears as blocky

e�ect on images.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Reducing Frequency Leakage

Frequency leakage can be reduced by multiplying the sampled

function by a function that reduces smoothly to zero at the

two ends of sampling interval.

The above approach is called windowing or apodizing.

Frequently, we use a Gaussian function for apodization.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

Reducing Frequency Leakage

Frequency leakage can be reduced by multiplying the sampled

function by a function that reduces smoothly to zero at the

two ends of sampling interval.

The above approach is called windowing or apodizing.

Frequently, we use a Gaussian function for apodization.
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D DFT De�nitions
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Properties of 2-D Discrete Fourier Transform

2-D Convolution Theorem

2-D DFT Pairs
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Image Restoration Basics

Image Restoration

Goals of both image enhancement and restoration are to
improve the image quality.

Enhancement techniques are mostly heuristic and subjective.

Restoration attempts to recover an image that has been
degraded by using a priori knowledge of degradation process.

Restoration techniques �rst model the degradation process,
then apply the inverse process to recover original image.
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Image Restoration Basics

Image Restoration

Goals of both image enhancement and restoration are to
improve the image quality.

Enhancement techniques are mostly heuristic and subjective.

Restoration attempts to recover an image that has been
degraded by using a priori knowledge of degradation process.

Restoration techniques �rst model the degradation process,
then apply the inverse process to recover original image.
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Image Restoration Basics

Modeling Image Degradation and Restoration

Modeling Degradation and Restoration Processes

Here we assume that an image f (x ,y) undergoes a
degradation process modeled by function h(x ,y) followed by
corruption by additive noise n(x ,y).

g(x ,y) = h(x ,y)∗ f (x ,y) +n(x ,y).

In the frequency domain this becomes

G (u,v) = H(u,v)F (u,v) +N(u,v).



Introduction to Image Restoration

Image Restoration Basics

Modeling Image Degradation and Restoration

Modeling Degradation and Restoration Processes

Here we assume that an image f (x ,y) undergoes a
degradation process modeled by function h(x ,y) followed by
corruption by additive noise n(x ,y).

g(x ,y) = h(x ,y)∗ f (x ,y) +n(x ,y).

In the frequency domain this becomes

G (u,v) = H(u,v)F (u,v) +N(u,v).



Introduction to Image Restoration

Image Restoration Basics

Noise Models

Noise Models

Noise may occur during acquisition and transmission.

During acquisition with a CCD camera, noise level is a�ected
by light levels and sensor temperature.

Noise can corrupt a signal during transmission as well,
especially if the signal is in analog form.
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Image Restoration Basics

Noise Models

Spatial and Frequency Noise Properties

It is useful to model the characteristics of noise in spatial and
frequency domain.

Here we assume the noise is

independent of spatial coordinates (not true for periodic noise)
and
that it is not correlated with the image.
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independent of spatial coordinates (not true for periodic noise)
and
that it is not correlated with the image.
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Noise Models

Noise Probability Density Functions

Most types of noise are modeled by a probability density
function.

The noise models are typically chosen based on some
understanding of the noise source.
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Image Restoration Basics

Noise Models

Gaussian Noise

The pdf is

p(z) =
1√
2πσ

e
−(z−z̄)2

2σ2 .

Gaussian noise is caused by

electronic circuit noise
sensor noise due to poor illumination and/or high temperature.
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Image Restoration Basics

Noise Models

Gaussian Noise

The pdf is

p(z) =
1√
2πσ

e
−(z−z̄)2

2σ2 .

Gaussian noise is caused by

electronic circuit noise
sensor noise due to poor illumination and/or high temperature.
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Image Restoration Basics

Noise Models

Rayleigh Noise

The pdf is given by

p(z) =

{
2
b (z−a)e(z−a)2/b z ≥ a

0 z < a

z̄ = a+
√

πb
4
, σ2 = b(4−π)

4
.

Typically used to characterize noise in range imaging.
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Erlang (gamma) Noise

The pdf is given by

p(z) =

{
abzb−1

(b−1)! (e−az z ≥ 0

0 z < 0

z̄ = b/a, σ2 = b/a2.

Typically used to characterize noise in laser imaging.
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Noise Models

Exponential Noise

The pdf is given by

p(z) =

{
ae−az z ≥ 0

0 z < 0

z̄ = 1/a, σ2 = 1/a2.

Typically used to characterize noise in laser imaging.
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Noise Models

Exponential Noise

The pdf is given by

p(z) =

{
ae−az z ≥ 0

0 z < 0

z̄ = 1/a, σ2 = 1/a2.

Typically used to characterize noise in laser imaging.
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Uniform Noise

The pdf is given by

p(z) =

{
1

b−a a≤ z ≤ b

0 otherwise

z̄ = a+b
2

/a, σ2 = (b−a)2

12
.

Least used in practice.

Useful as basis for random number generators.
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Impulse (Salt and Pepper) Noise

The pdf is given by

p(z) =

{
Pa z = a

Pb z = b

Common when quick transients (eg, faulty switching) occur
during imaging.
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Impulse (Salt and Pepper) Noise

The pdf is given by

p(z) =

{
Pa z = a

Pb z = b

Common when quick transients (eg, faulty switching) occur
during imaging.
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Noise Models

Noise Model Examples

Figure: Images and histograms after adding Gaussian, Rayleigh and
Gamma noise to a synthetic image.
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Noise Models

Noise Model Examples

Figure: Images and histograms after adding Exponential, Uniform and
Impulse to a synthetic image.
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Periodic Noise

This noise is usually caused by some electromechanical
interference.

The spectrum of this noise type will show symmetric peaks at
the noise frequencies.
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Noise Models

Noise Parameter Estimation

Estimate the parameters of noise pdf from small patches of
reasonably constant background intensity.

For impulse noise, estimate probability of black/white pixels.
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Addressing Noise for Restoration

Restoration in the Presence of Noise only

If noise can be estimated, it can be subtracted from the input
image

We follow 2 steps
1 estimate n(x ,y)
2 g(x ,y) = f (x ,y) +n(x ,y)⇒ f̂ (x ,y) = g(x ,y)− n̂(x ,y).

It is very di�cult to subtract noise when it is independent from
the spatial coordinates.
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Addressing Noise for Restoration

Restoration in the Presence of Noise only

If noise can not be estimated, �ltering methods are used to
suppress noise.

Filtering is better suited for reducing additive and random
noise.

The main types of �lters for denoising are

Mean �lters (arithmetic, geometric, harmonic, etc)
Order statistics �lters (median, min, max)
Frequency-domain �lters.
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Addressing Noise for Restoration - Spatial Filtering

Arithmetic Mean Filter

The �ltering operation is given by

f̂ (x ,y) =
1

mn ∑
(s,t)∈Sxy

g(s, t).

It applies blurring that reduces noise, but removes image detail
as well.
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Geometric Mean Filter

The �ltering operation is given by

f̂ (x ,y) =

[
∏

(s,t)∈Sx ,y
g(s, t)

] 1
mn

.

This �lter applies smoothing too, and removes less image
detail than the arithmetic mean.
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Harmonic Mean Filter

The �ltering process is given by

f̂ (x ,y) =
mn

∑(s,t)∈Sx ,y
1

g(s,t)

.

The harmonic �lter works well for salt noise but cannot
address pepper noise. It works well for Gaussian noise too.
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Contraharmonic Mean Filter

The �ltering operation is given by

f̂ (x ,y) =
∑(s,t)∈Sx ,y g(s, t)Q+1

∑(s,t)∈Sx ,y g(s, t)Q
.

Q > 0 pepper noise.

Q < 0 salt noise.

Q = 0 becomes an arithmetic mean �lter.
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Arithmetic and Geometric Mean Filter Example

The original
image, image
corrupted by
Gaussian noise,
�ltered by
arithmetic
mean, �ltered
by geometric
mean �lter in
clockwise
order.
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Contraharmonic Mean Filter Example

Image corrupted by
pepper noise, image
corrupted by salt
noise, pepper noise
�ltered by
contraharmonic �lter
of order 1.5, salt noise
�ltered by
contraharmonic �lter
with Q =−1.5 in
clockwise order.
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Order-statistic Filters

Order-statistic �lters are nonlinear spatial �lters.

Their response is based on ordering (ranking) of the pixels
contained in an area covered by the �lter kernel.
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Median Filter

The �ltering operation is given by

f̂ (x ,y) = median(s,t)∈Sx ,y {g(s, t)}.

It produces less blurring than the arithmetic �lters.
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Max and Min Filters

The max �ltering operation is given by

f̂ (x ,y) = max(s,t)∈Sx ,y {g(s, t)}.

The max �lter is good for pepper noise.

The min �ltering operation is given by

f̂ (x ,y) = min(s,t)∈Sx ,y {g(s, t)}.

The min �lter is good for salt noise.
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Midpoint Filter

This �ltering operation is given by

f̂ (x ,y) = 1/2
[
max(s,t)∈Sx ,y {g(s, t)}+min(s,t)∈Sx ,y {g(s, t)}

]
.

This can be seen as an averaging-order statistics hybrid.

It works best for Gaussian or uniform noise.
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Alpha-trimmed Mean Filter

Good for multiple types of noise such as Gaussian noise, and
salt-and-pepper noise.

Assume an m×n neighborhood
1 Disregard d/2 lowest and d/2 highest values.
2 Average the remaining values.

d = 0, arithmetic mean

d = mn−1 median.
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Alpha-trimmed Mean Filter

Good for multiple types of noise such as Gaussian noise, and
salt-and-pepper noise.

Assume an m×n neighborhood
1 Disregard d/2 lowest and d/2 highest values.
2 Average the remaining values.

d = 0, arithmetic mean

d = mn−1 median.
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Median Filter Example

Image
corrupted by
salt and pepper
noise, salt and
pepper noise
�ltered by
median �lter,
second pass of
median �lter,
third pass of
median �lter in
clockwise
order.
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Max and Min Filter Example

Max �lter
applied to
pepper noise
(left), and min
�lter applied to
salt noise
(right).
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Mean, Median, Alpha-trimmed Mean Filter Examples

Image corrupted by uniform
noise, additional salt and
pepper noise, arithmetic
mean �lter output,
geometric mean �lter
output, median �lter output,
alpha-trimmed mean �lter
output (left to right and top
to bottom).
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Adaptive Filters

They use non-�xed (i.e., adaptive) parameters

Typically, adaptive �lters have superior performance compared
to non-adaptive �lters.

But they have higher computational complexity.
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They use non-�xed (i.e., adaptive) parameters

Typically, adaptive �lters have superior performance compared
to non-adaptive �lters.

But they have higher computational complexity.
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Adaptive Median Filter

Size of �ltered region is not �xed.

Its operation depends on the statistical characteristics of the
pixel values inside the �ltered region.
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Adaptive Median Filter

Size of �ltered region is not �xed.

Its operation depends on the statistical characteristics of the
pixel values inside the �ltered region.
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Adaptive Median Filter Example

Image corrupted by salt and pepper noise, median �lter
output, adaptive median �lter output (left to right).
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Estimating the Degradation

Degradation Models

We assume the following degradation and noise corruption
scenario

G (u,v) = H(u,v)F (u,v)+N(u,v).

H can be modeled mathematically, for example to simulate
atmospheric turbulence and motion.
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Image Restoration to address Degradation

Estimating the Degradation

Degradation Because of Atmospheric Turbulence

The atmospheric
turbulence can be
modeled as

H(u,v) = e−k(u
2+v2)5/6 .

From left to right and
top to bottom: original
image, degraded with
k =
0.0025,0.001,0.00025.
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Estimating the Degradation

Degradation Because of Linear Motion

Consider the case of camera/object planar motion.

The coordinates change over time, that is x0(t) and y0(t).
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Estimating the Degradation

Degradation Because of Linear Motion

Let T be the exposure time, which is the time interval for
which the camera shutter is open.

The acquired image g(x ,y) is

g(x ,y) =
∫ T

0
f (x−x0(t),y −y0(t))dt.

After applying Fourier transform and using the Convolution
theorem G (u,v) = F (u,v)H(u,v) we can show that

H(u,v) =
∫ T

0
e−j2π(ux0(t)+vy0(t))dt.
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which the camera shutter is open.

The acquired image g(x ,y) is
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0
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Estimating the Degradation

Degradation Because of Linear Motion

When x0(t) = at/T and y0(t) = 0

H(u,v) =
∫ T

0
e−j2π(ux0(t)+vy0(t))dt

=
∫ T

0
e−j2π(uat/T )dt

=
T

πua
sin(πua)e−j2π(ua).
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Estimating the Degradation

Degradation Because of Linear Motion

When x0(t) = at/T and y0(t) = bt/T

H(u,v) =
T

π(ua+ vb)
sin(π(ua+ vb))e−j2π(ua+vb).
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Estimating the Degradation

Degradation Because of Linear Motion Example

Figure: Degradation because of linear motion with a= b = 0.1 and

T = 1.
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Inverse Filtering

Inverse Filtering

The degradation model is

G (u,v) = H(u,v)F (u,v)+N(u,v).

Straightforward solution is direct inverse �ltering

F̂ (u,v) =
G (u,v)

H(u,v)
.

This is applied as an array operation.
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Inverse Filtering

Inverse Filtering - Practical Issues

Continuing the previous analysis we have

G (u,v)

H(u,v)
=

H(u,v)F (u,v)

H(u,v)
+

N(u,v)

H(u,v)

F̂ (u,v) = F (u,v)+
N(u,v)

H(u,v)
.

This approach has two problems:

We cannot restore the image completely when we don't know

N(u,v).
For small values of H(u,v) the noise term may dominate the

estimate adding large error.

One solution for this is to restrict analysis within a radius from

the DC frequency to ensure that H(u,v) will have large

enough magnitude.
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Inverse Filtering

Inverse Filtering Example

Result of inverse �ltering
using full frequency
range, and cut-o� radius
of 40, 70, and 85 (left to
right and top to bottom).

Observe that the using
the full range or an
excessive radius will
amplify the noise term
and produce
unacceptable restoration.
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Wiener Filtering

Wiener Filtering

In contrast to inverse �ltering, Wiener utilizes statistical
properties of the noise.

This method considers image and noise to be random variables
and �nds the estimate f̂ that minimizes the mean squared error

e2 = E{(f − f̂ )2}.

Working hypotheses:

image and noise are uncorrelated

either one has zero mean

intensity levels in f̂ are a linear function of intensity levels of f .
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Wiener Filtering

Wiener showed that the error function minimum in frequency
domain is

F̂ (u,v) =
G (u,v)

H(u,v)

|H(u,v)|2

|H(u,v)|2+ Sn(u,v)
Sf (u,v)

.

where
H(u,v): degradation transfer function
G (u,v): transformed degraded image
Sn(u,v) = |N(u,v)|2: power spectrum of the noise
Sf (u,v) = |F (u,v)|2: power spectrum of the ideal image.
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Wiener Filtering

In general, we do not know the power spectra of the ideal
image or the noise.

Then we approximate F̂ (u,v) as

F̂ (u,v) =
G (u,v)

H(u,v)

|H(u,v)|2

|H(u,v)|2+K
.

where
K : constant speci�ed by user
H(u,v): degradation transfer function
G (u,v): transformed degraded image
Sn(u,v) = |N(u,v)|2: power spectrum of the noise
Sf (u,v) = |F (u,v)|2: power spectrum of the ideal image.
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Wiener Filtering

Error Measures from Power Spectra

Signal to Noise Ratio, SNR

SNR =
∑
M−1
u=0 ∑

N−1
v=0 |F (u,v)|2

∑
M−1
u=0 ∑

N−1
v=0 |N(u,v)|2

.

Mean Square Error, MSE

MSE =
1

MN

M−1

∑
u=0

N−1

∑
v=0

[f (x ,y)− f̂ (x ,y)]2.

Signal to Noise Ratio (spatial domain), SNR

SNR =
∑
M−1
x=0 ∑

N−1
y=0 f̂ (x ,y)

2

∑
M−1
x=0 ∑

N−1
y=0 (f (x ,y)− ˆf (x ,y))2

.
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Wiener Filtering

Wiener Filtering Example

Left column:
motion blur and
additive noise
corruption.

Middle column:
inverse �ltering
output.

Right column:
Wiener �ltering
output.
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Constrained Least Squares (CLS) Filtering

Constrained Least Squares Filtering Motivation

Wiener �lter

Requires knowledge of noise and signal power spectra.

Optimal averaged images.

CLS

Requires knowing only the mean and standard deviation of the

noise.

Optimal for all images.
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Constrained Least Squares Filtering

Our initial assumption was that an image f (x ,y) undergoes a
degradation process modeled by function h(x ,y) followed by
corruption by additive noise n(x ,y).

g(x ,y) = h(x ,y)∗ f (x ,y)+n(x ,y).

By applying convolution in spatial domain we get

ge(x ,y) =
M−1

∑
m=0

N−1

∑
n=0

fe(m,n)he(x−m,y −n)+ne(x ,y)

x = 0,1, · · · ,M−1
y = 0,1, · · · ,N−1
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Image Restoration to address Degradation

Constrained Least Squares (CLS) Filtering

Expressing Degradation using Matrix Equations

If we consider the 1-D case the extended convolution can be
expressed by

g =Hf+n

where
g :M×1, H :M×M, f :M×1, n :M×1.
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Expressing Degradation using Matrix Equations

In the 2-D case the extended convolution can be expressed by

g =Hf+n

where
g :MN×1, H :MN×MN, f :MN×1, n :MN×1.

Question: can we use matrix operations to estimate f?
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Expressing Degradation using Matrix Equations

Question: can we use matrix operations to estimate f?

Answer: this is not simple because of

very high dimensional vectors

need to invert H

solution being sensitive to noise.
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Constrained Least Squares Filtering Regularization

We can deal with sensitivity to noise by applying smoothness
constraint to our solution, that is by minimizing

C =
M−1

∑
x=0

N−1

∑
y=0

[∇2f (x ,y)]2

subject to
‖g− Ĥf‖2 = ‖n‖2.
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Constrained Least Squares (CLS) Filtering

Constrained Least Squares Filtering Solution

We can show that the solution is

F̂ (u,v) =
G (u,v)

H(u,v)

|H(u,v)|2

|H(u,v)|2+ γ|P(u,v)|2
.

where
P(u,v) is the Fourier transform of Laplacian kernel

p(x ,y) =

 0 1 0
1 −4 1
0 1 0


γ is the only parameter, and we get inverse �ltering for γ = 0.

We also note that ‖n‖2 is a monotonic function of γ .
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Constrained Least Squares Filtering Algorithm

1 De�ne degradation model

g =Hf+n.

2 Calculate residual error

r = g− Ĥf.

3 Adjust γ and recompute f̂ .

4 If
‖r‖2−‖n‖2 ≤ a

return,
otherwise go to step 2.
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Constrained Least Squares Filtering Algorithm

In the previous algorithm we need to �nd n.

We can show that n=MN[µ2
n +σ2

n ]. where µn is the noise
mean, and σn is the noise standard deviation.
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In the previous algorithm we need to �nd n.

We can show that n=MN[µ2
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Constrained Least Squares (CLS) Filtering

Constrained Least Squares Filtering Example

First column:
motion blur and
additive noise
corruption.

Second column:
inverse �ltering
output.

Third column:
Wiener �ltering
output.

Fourth column:
CLS �ltering
output.
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Mathematical Morphology

The term morphology refers to the �eld of Biology that studies

the form and structure of animals and plants.

In Image Processing, the �eld of Mathematical Morphology or

Morphology is useful for analyzing shapes.
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Mathematical Morphology

Morphology uses set theory to represent objects in an image.

In binary images:

the set of all white pixels de�nes an object

pixels of the image are represented by ordered pairs of their

coordinates (x ,y) ∈ Z2 on the image plane.

In grayscale images:

the set of all white pixels de�nes an object

pixels of the image are represented by ordered 3-tuples of their

coordinates on the image plan and the pixel intensities

(x ,y ,z) ∈ Z3.
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Re�ection

Let B be a set of pixels in a binary image and w = (x ,y) an
element of B .

The re�ection of B denoted by B̂ is de�ned as

B̂ = {(−x ,−y)|∀(x ,y) ∈ B}.
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Translation

Let B be a set of pixels in a binary image and w = (x ,y) a
coordinate point.

The translation of B denoted by (B)w is de�ned as

(B)w = {(a,b)+(x ,y)|∀(a,b) ∈ B}.

After translation, B has been shifted by w .
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Re�ection and Translation Example

Original set of

points (left),

set after

re�ection

(middle), set

after

translation

(right).
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The Structuring Element (SE)

The structuring element also denoted by SE is a small set or

subimage used to examine an image for speci�c properties of

interest.

SEs are basic shapes such as line, cross, diamond, etc.

We usually need to de�ne the origin of an SE for

morphological operations.
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The Structuring Element (SE)

The structuring element also denoted by SE is a small set or

subimage used to examine an image for speci�c properties of

interest.

SEs are basic shapes such as line, cross, diamond, etc.

We usually need to de�ne the origin of an SE for

morphological operations.
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Mathematical Morphology

Structuring Element Examples

Examples of

structuring

elements. The

centers are

denoted by the

dots.
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Erosion and Dilation

Erosion

Let A and B be sets of pixels in Z2.

Then the erosion of A by B written A	B is de�ned as

A	B = {w |(B)w ⊆ A}.

To perform erosion we can move B over A and �nd all the

locations it will �t. The set of all such locations forms A	B .
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Erosion

Let A and B be sets of pixels in Z2.

Then the erosion of A by B written A	B is de�ned as

A	B = {w |(B)w ⊆ A}.

To perform erosion we can move B over A and �nd all the

locations it will �t. The set of all such locations forms A	B .
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Erosion and Dilation

Equivalent Erosion De�nition

Let A and B be sets of pixels in Z2.

Then the erosion of A by B written A	B is de�ned as

A	B = {w |(B)w ∩Ac = /0}.

To perform erosion we can move B over A and �nd all the

locations it will �t. The set of all such locations forms A	B .
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Equivalent Erosion De�nition

Let A and B be sets of pixels in Z2.

Then the erosion of A by B written A	B is de�ned as

A	B = {w |(B)w ∩Ac = /0}.

To perform erosion we can move B over A and �nd all the

locations it will �t. The set of all such locations forms A	B .
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Equivalent Erosion De�nition

Let A and B be sets of pixels in Z2.

Then the erosion of A by B written A	B is de�ned as

A	B = {w |(B)w ∩Ac = /0}.

To perform erosion we can move B over A and �nd all the

locations it will �t. The set of all such locations forms A	B .
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Erosion and Dilation

The Erosion Process

Top row - A set A and a

structuring element B
(left). The result of

erosion of A by B (right).

Bottom row - A line SE

and the result of erosion

of A by the line SE.

Erosion can be used for

object shrinking or

thinning.
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Erosion and Dilation

Erosion Example

Original 486×486 image,

erosion output using

11×11 square SE,

erosion output using

15×15 square SE,

erosion output using

45×45 square SE (top to

bottom and left to right).
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Erosion and Dilation

Dilation

Let A and B be sets of pixels in Z2.

Then the dilation of A by B written A⊕B is de�ned as

A⊕B = {(x ,y)+(u,v)|∀(x ,y) ∈ A,∀(u,v) ∈ B}.

To perform dilation we can move B over A and replace every

point (x ,y) ∈ A with a copy of B centered at (x ,y). The set

of all such locations forms A⊕B .
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Dilation

Let A and B be sets of pixels in Z2.

Then the dilation of A by B written A⊕B is de�ned as
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To perform dilation we can move B over A and replace every

point (x ,y) ∈ A with a copy of B centered at (x ,y). The set

of all such locations forms A⊕B .
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Dilation

Let A and B be sets of pixels in Z2.

Then the dilation of A by B written A⊕B is de�ned as

A⊕B = {(x ,y)+(u,v)|∀(x ,y) ∈ A,∀(u,v) ∈ B}.

To perform dilation we can move B over A and replace every

point (x ,y) ∈ A with a copy of B centered at (x ,y). The set

of all such locations forms A⊕B .
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Erosion and Dilation

Equivalent Dilation De�nition

Let A and B be sets of pixels in Z2.

Then the dilation of A by B written A⊕B is de�ned as

A⊕B = {w |(B̂)w ∩A 6= /0}.

or

A⊕B = {w |[(B̂)w ∩A]⊆ A}.

The dilation of a A by B is the set of all translations w , such

that B̂ and A overlap by at least one element.

To perform dilation we can move B over A and replace every

point (x ,y) ∈ A with a copy of B centered at (x ,y). The set

of all such locations forms A⊕B .
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Equivalent Dilation De�nition

Let A and B be sets of pixels in Z2.

Then the dilation of A by B written A⊕B is de�ned as

A⊕B = {w |(B̂)w ∩A 6= /0}.

or

A⊕B = {w |[(B̂)w ∩A]⊆ A}.

The dilation of a A by B is the set of all translations w , such

that B̂ and A overlap by at least one element.

To perform dilation we can move B over A and replace every

point (x ,y) ∈ A with a copy of B centered at (x ,y). The set

of all such locations forms A⊕B .
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Equivalent Dilation De�nition

Let A and B be sets of pixels in Z2.

Then the dilation of A by B written A⊕B is de�ned as

A⊕B = {w |(B̂)w ∩A 6= /0}.

or

A⊕B = {w |[(B̂)w ∩A]⊆ A}.

The dilation of a A by B is the set of all translations w , such

that B̂ and A overlap by at least one element.

To perform dilation we can move B over A and replace every

point (x ,y) ∈ A with a copy of B centered at (x ,y). The set

of all such locations forms A⊕B .
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Erosion and Dilation

Equivalent Dilation De�nition

Let A and B be sets of pixels in Z2.

Then the dilation of A by B written A⊕B is de�ned as

A⊕B = {w |(B̂)w ∩A 6= /0}.

or

A⊕B = {w |[(B̂)w ∩A]⊆ A}.

The dilation of a A by B is the set of all translations w , such

that B̂ and A overlap by at least one element.

To perform dilation we can move B over A and replace every

point (x ,y) ∈ A with a copy of B centered at (x ,y). The set

of all such locations forms A⊕B .
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Erosion and Dilation

The Dilation Process

Top row - A set A and a

structuring element B
(left). The result of

dilation of A by B
(right).

Bottom row - A line SE

and the result of erosion

of A by the line SE.

Dilation can be used for

object growing or

thickening.
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Erosion and Dilation

Dilation Example

Original image (left) and

the output of dilation of

the image by a diamond

SE. We observe that the

gaps in characters have

been bridged and the

dilated image is more

suitable for optical

character recognition.
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Erosion and Dilation

Duality

Erosion and dilation are duals of each other with respect to set

complement and re�ection:

(A	B)c = Ac ⊕ B̂

and

(A⊕B)c = Ac 	 B̂.

This is particularly useful when the structuring element is

symmetric with respect to its origin.
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Duality

Erosion and dilation are duals of each other with respect to set

complement and re�ection:

(A	B)c = Ac ⊕ B̂

and

(A⊕B)c = Ac 	 B̂.

This is particularly useful when the structuring element is

symmetric with respect to its origin.
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Morphological Image Processing

Outline and Learning Goals

Previous class:

Introduction to mathematical morphology

De�nitions of erosion and dilation morphological operations

Applications of erosion and dilation

Today:
1 Morphological Image Processing

Opening and Closing

Hit-or-Miss Transformation

Other Morphological Algorithms
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Morphological Image Processing

Opening and Closing

Opening and Closing

Opening and closing are another two basic morphological

operations that are built upon the erosion and dilation

operations.

Opening widens gaps and breaks narrow bridges between

groups of pixels.

Closing eliminates small holes and �lls gaps.
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Opening and Closing

Opening and closing are another two basic morphological

operations that are built upon the erosion and dilation

operations.

Opening widens gaps and breaks narrow bridges between

groups of pixels.

Closing eliminates small holes and �lls gaps.
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Morphological Image Processing

Opening and Closing

Opening

Opening of a set A by a structuring element B is symbolized

by A◦B and given by

A◦B = (A	B)⊕B.

So A is �rst eroded by B and the result is dilated by B .



Morphological Image Processing

Morphological Image Processing

Opening and Closing

Opening

Opening of a set A by a structuring element B is symbolized

by A◦B and given by

A◦B = (A	B)⊕B.

So A is �rst eroded by B and the result is dilated by B .
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Morphological Image Processing

Opening and Closing

Geometric Interpretation of Opening

The opening of A by B is obtained by the union of all

translations of B that �t into A.

So we can express opening as

A◦B = ∪z{(B)z |(B)z ⊆ A}.
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Morphological Image Processing

Opening and Closing

Geometric Interpretation of Opening

The opening of A by B is obtained by the union of all

translations of B that �t into A.

So we can express opening as

A◦B = ∪z{(B)z |(B)z ⊆ A}.
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Opening and Closing

Opening Example

The morphological opening process can be explained as a

structuring element B rolling along inner boundary of A.
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Opening and Closing

Closing

Closing of a set A by a structuring element B is symbolized by

A•B and given by

A•B = (A⊕B)	B.

So A is �rst dilated by B and the result is eroded by B .
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Opening and Closing

Closing

Closing of a set A by a structuring element B is symbolized by

A•B and given by

A•B = (A⊕B)	B.

So A is �rst dilated by B and the result is eroded by B .
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Opening and Closing

Geometric Interpretation of Closing

Closing of a set A by a structuring element B can be

resembled by rolling B on the outside of A's boundary and

tracking the points that are reached by B .

A point w is an element of A•B , i� (B)z ∩A 6= /0 for any

translation of (B)z that contains w .
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Opening and Closing

Geometric Interpretation of Closing

Closing of a set A by a structuring element B can be

resembled by rolling B on the outside of A's boundary and

tracking the points that are reached by B .

A point w is an element of A•B , i� (B)z ∩A 6= /0 for any

translation of (B)z that contains w .
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Opening and Closing

Closing Example

The morphological closing process can be explained as a

structuring element B rolling along outer boundary of A.
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Opening and Closing

Opening and Closing Operations

Morphological

opening and

closing of A by

a circular

structuring

element.
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Opening and Closing

Opening and Closing Example

Morphological

opening

followed by

closing for

image

enhancement.
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Opening and Closing

Opening and Closing Duality

The duality between opening and closing can be expressed by

(A•B)c = (Ac ◦ B̂)

and

(A◦B)c = (Ac • B̂)
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Opening and Closing

Opening Properties

Opening satis�es the following properties

1 A◦B is a subset (subimage) of A.

2 If C is a subset of D, then C ◦B is a subset of D ◦B .
3 (A◦B)◦B = A◦B . After the �rst opening, any additional

opening operations have no additional e�ect.
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Opening satis�es the following properties

1 A◦B is a subset (subimage) of A.

2 If C is a subset of D, then C ◦B is a subset of D ◦B .

3 (A◦B)◦B = A◦B . After the �rst opening, any additional

opening operations have no additional e�ect.
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Opening and Closing

Opening Properties

Opening satis�es the following properties

1 A◦B is a subset (subimage) of A.

2 If C is a subset of D, then C ◦B is a subset of D ◦B .
3 (A◦B)◦B = A◦B . After the �rst opening, any additional

opening operations have no additional e�ect.
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Opening and Closing

Closing Properties

Closing satis�es the following properties

1 A is a subset (subimage) of A•B .

2 If C is a subset of D, then C •B is a subset of D •B .
3 (A•B)•B = A•B . After the �rst closing, any additional

opening operations have no additional e�ect.
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Opening and Closing

Closing Properties

Closing satis�es the following properties

1 A is a subset (subimage) of A•B .
2 If C is a subset of D, then C •B is a subset of D •B .

3 (A•B)•B = A•B . After the �rst closing, any additional

opening operations have no additional e�ect.
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Opening and Closing

Closing Properties

Closing satis�es the following properties

1 A is a subset (subimage) of A•B .
2 If C is a subset of D, then C •B is a subset of D •B .
3 (A•B)•B = A•B . After the �rst closing, any additional

opening operations have no additional e�ect.
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Hit-or-Miss Transformation

This method is used to detect shapes.

Let A be a set consisting of sets C , D, and E , such that

A= C ∪D ∪E .
Let B denote the set containing D and its background W ,

that is B = D ∪W .

Assume that we want to �nd the location of D.

The location of D is given by the intersection of the erosion of

A by D with the erosion of Ac by W −D. This is expressed as

A~B = (A	D)∩ (Ac 	 (W −D)).
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A~B = (A	D)∩ (Ac 	 (W −D)).
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Let B denote the set containing D and its background W ,

that is B = D ∪W .
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Hit-or-Miss Transformation

This method is used to detect shapes.

Let A be a set consisting of sets C , D, and E , such that

A= C ∪D ∪E .
Let B denote the set containing D and its background W ,

that is B = D ∪W .

Assume that we want to �nd the location of D.

The location of D is given by the intersection of the erosion of

A by D with the erosion of Ac by W −D. This is expressed as

A~B = (A	D)∩ (Ac 	 (W −D)).
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Hit-or-Miss Transformation

If we let B1 = D and B2 =W −D, it follows that

A~B = (A	B1)∩ (Ac 	B2).

By utilizing duality between erosion and dilation we get

A~B = (A	B1)− (A⊕ B̂2).
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Hit-or-Miss Transformation

If we let B1 = D and B2 =W −D, it follows that

A~B = (A	B1)∩ (Ac 	B2).

By utilizing duality between erosion and dilation we get

A~B = (A	B1)− (A⊕ B̂2).
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Hit-or-Miss Transformation

Hit-or-Miss Transformation Process

Find the location of D using

the hit-or-miss process.

1 Erode A by D.

2 Erode Ac by W −D.

3 Find intersection of

previous two.
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Other Morphological Algorithms

Boundary Extraction

Boundary extraction is used very frequently in image

processing and analysis.

The boundary of a set A denoted by β (A), is obtained by

erosion by an SE element B followed by the di�erence between

the original image and the eroded image.

This is expressed by

β (A) = A− (A	B).

The boundary thickness depends on the structuring element.
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Boundary extraction is used very frequently in image

processing and analysis.

The boundary of a set A denoted by β (A), is obtained by
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β (A) = A− (A	B).

The boundary thickness depends on the structuring element.
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Other Morphological Algorithms

Boundary Extraction

Boundary extraction is used very frequently in image

processing and analysis.

The boundary of a set A denoted by β (A), is obtained by

erosion by an SE element B followed by the di�erence between

the original image and the eroded image.

This is expressed by

β (A) = A− (A	B).

The boundary thickness depends on the structuring element.
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Other Morphological Algorithms

Boundary Extraction Example

Find the boundary of D.

1 Erode A by 3×3 square

SE.

2 Subtract eroded image

from original.
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Other Morphological Algorithms

Connected Component Extraction

Often times we want to �nd the connected components of a

binary image.

Recall that a connected component is a set of pixels that are

related by an adjacency type.

We can use morphological operations to �nd the connected

components of a binary image.



Morphological Image Processing

Morphological Image Processing

Other Morphological Algorithms

Connected Component Extraction

Often times we want to �nd the connected components of a
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components of a binary image.
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Connected Component Extraction

Often times we want to �nd the connected components of a

binary image.

Recall that a connected component is a set of pixels that are

related by an adjacency type.

We can use morphological operations to �nd the connected

components of a binary image.
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Other Morphological Algorithms

Connected Component Extraction

Let A be a set containing our object coordinates with one or

more connected components, and B be a structuring element.

Let X0 be a set that contains the connected components.

Starting from X0 we can �nd the connected component by

iteratively applying

Xk = (Xk−1⊕B)∩A,k = 1,2,3, ...

The process ends when Xk = Xk−1.
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Starting from X0 we can �nd the connected component by

iteratively applying

Xk = (Xk−1⊕B)∩A,k = 1,2,3, ...

The process ends when Xk = Xk−1.
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Let A be a set containing our object coordinates with one or

more connected components, and B be a structuring element.

Let X0 be a set that contains the connected components.

Starting from X0 we can �nd the connected component by

iteratively applying
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The process ends when Xk = Xk−1.
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Connected Component Extraction

Let A be a set containing our object coordinates with one or

more connected components, and B be a structuring element.

Let X0 be a set that contains the connected components.

Starting from X0 we can �nd the connected component by

iteratively applying

Xk = (Xk−1⊕B)∩A,k = 1,2,3, ...

The process ends when Xk = Xk−1.
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Other Morphological Algorithms

Connected Component Extraction Example

Find the connected

component of A.

1 Initialize connected

component subimage

with one point.
2 Repeat:

1 Dilate connected

component.
2 Find intersection of

previous result with A.

3 Until connected

component does not

change.
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Morphological Image Processing

Other Morphological Algorithms

Active Research Areas

ISMM: International Symposium on Mathematical Morphology.

Scale-space theory.

3D image analysis.
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Image Segmentation

Outline

Previous chapter:

Introduction to mathematical morphology

De�nitions of erosion, dilation, opening, closing morphological
operators

Morphological algorithms (hit-or-miss, boundary extraction,
connected component labeling)

Today:
1 Image Segmentation

Image Segmentation: Background and De�nitions
Point, Line and Edge Detection
Segmentation by Thresholding
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Image Segmentation: Background and De�nitions

Image Segmentation Introduction

Image segmentation is a key step in image analysis and
computer vision.

Segmentation divides the visual scene into smaller regions and
objects.

The level of detail is driven by the application.

Image segmentation is a di�cult task because of imaging
artifacts, limits in imaging spatial and intensity resolution, and
di�culty in de�ning the perfect segmentation.
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Image Segmentation Introduction

Sometimes we use prior knowledge to increase segmentation
accuracy. One example is when the environment is controlled
as in automated inspection applications (e.g., quality control
of electronic components).

When the environment is not controlled, we select sensors that
will reveal the image attributes we are looking for. For
example, in remote sensing we may use multi-channel imaging
sensors to identify crops, rivers, buildings and roads.
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Image Segmentation Introduction

Most of the segmentation algorithms make use of the
fundamental properties of discontinuity and similarity.

Methods that detect discontinuities are line and edge detection
and linking techniques.

Similarity-based methods divide the image into homogeneous
regions. Such methods are thresholding, region growing,
region splitting and merging techniques.

Nowadays it is common to develop methods combine ideas
from the discontinuity-based and region-based segmentation.
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Image Segmentation De�nition

Let R represent the spatial region of the image. Image
segmentation can be de�ned as the process that partitions R into n
subregions R1,R2, ...,Rn such that

1 ∪ni=1Rn = R .

2 Ri is a connected set, for i = 1,2, ...,n.

3 Ri ∩Rj = /0 ∀i , j : i 6= j .

4 Q(Ri ) = TRUE for i = 1,2, ...,n.

5 Q(Ri ∪Rj) = FALSE for any adjacent regions Ri and Rj with
i 6= j ,
where Q(Rk) is a logical predicate de�ned over the points in
set Rk , for example Q(Ri ): all pixels in Ri have the same
intensity.
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Image Segmentation De�nition

1 In edge-based segmentation we are looking for discontinuities
between adjacent regions.

2 In region-based segmentation we utilize intensity homogeneity
criteria to form each region.
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Image Segmentation Example

Edge-based vs.
region-based
segmentation.
Top: ideal
case. Bottom:
noisy case.
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Background

Here we detect sharp and local changes of intensity.

Looking for three types of features: isolated points, lines and
edges.

To detect these features we �rst calculate �rst- and
second-order derivatives.

After using Taylor series about x , keeping the linear terms and
setting ∆x = 1 we get the following approximations

∂ f

∂x
= f (x +1,y)− f (x ,y),

∂ f

∂y
= f (x ,y +1)− f (x ,y),

∂ 2f

∂x2
= f (x +1,y)−2f (x ,y) + f (x−1,y),

∂ 2f

∂y2
= f (x ,y +1)−2f (x ,y) + f (x ,y −1).
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First- and Second-order Derivatives of Intensity

Let's review
the intensity
pro�le
example, along
with the �rst-
and
second-order
derivatives.
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Properties of First- and Second-order Derivatives

First-order derivatives produce thicker edges

Second-order derivatives have a stronger response to isolated
lines, points and noise.

Second-order derivatives produce a double-edge response at
ramps and steps.

The sign of second-order derivative can show the intensity
transition.
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Point Detection

Because the second-order derivative can detect thin details, it
is suitable for point detection.

We can apply a Laplacian �lter followed by thresholding to
detect points.

∇
2f (x ,y) =

∂ 2f

∂x2
+

∂ 2f

∂y2
.

The discrete approximation is

∇
2f (x ,y) = f (x+1,y)+f (x−1,y)+f (x ,y +1)+f (x ,y−1)−4f (x ,y).

We apply the Laplacian detector by spatial �ltering, then apply
threshold T to the �lter's output L(x ,y) to detect points:

g(x ,y) =

{
1 if |L(x ,y)| ≥ T

0 otherwise.
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Line Detection

Because second-order derivatives produce a stronger response
and produce thinner lines than �rst-order derivatives, the
former can be used for line detection.

We can use the positive-only values of the Laplacian to
address double-edges.

To suppress peaks caused by noise we can apply thresholding
to the Laplacian output.

To detect speci�c line directions we can use masks with
di�erent orientations.
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Edge Models

Step edge (left): this is a transition between two intensity
levels that is completed in 1 pixel. This is an ideal edge found
in computer-generated images.

Ramp edge (middle): this model is better approximation for
blurred and noisy edges that appear in practice. The slope is
reciprocal to the amount of blurring.

Roof edge (right): these are models of lines through regions.
These edges appear in digitized line drawings.
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Edge Models Example

All edge types
can occur in
the same
image.
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Edge Modeling Conclusions

The �rst-order
magnitude can be
used to detect the
presence of an edge.

The sign of the
second-order
derivative can be used
to localize the side of
an edge.

The zero-crossing of
second-order
derivative can localize
the center of a thick
edge.
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E�ect of Noise on Edges

Noise can severely a�ect edge
detection.

This happens because both
edges and noise correspond to
high frequency content.
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Edge Detection Steps

1 Image smoothing for noise reduction.

2 Detection of edge points - extract all candidates for edge
points.

3 Edge localization - select from candidates the edge points.
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Edge Detection using the Image Gradient

The gradient is de�ned as

∇f ≡ grad(f ) =

[
gx
gy

]
=

[
∂ f
∂x
∂ f
∂y

]
.

The magnitude is given by

M(x ,y) = mag(∇f ) =
√

g2x +g2y

The angle is given by

α(x ,y) = arctan

[
gy
gx

]
.
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Gradient Operators

We know that partial derivatives
are approximated by

∂ f

∂x
= f (x +1,y)− f (x ,y)

and

∂ f

∂y
= f (x ,y +1)− f (x ,y).

To take diagonal di�erences we
use Roberts operators.

Prewitt operators compute the
derivatives using 3×3 masks.

Sobel operators use a weight of
2 at the center location.
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Gradient-based Edge Detection Example

Image smoothing using 5×5
averaging.

Output produced by Sobel
horizontal and vertical edge
detectors

Gradient magnitude is �nally
computed.
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Thresholding

Thresholding is a simple and fast operation that �nds frequent
use in image processing.

Here we use thresholding to partition images into regions
based on intensity values.
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Thresholding Basics

Let f (x ,y) the intensity function of an image, and let the
image consist of light objects on a dark background. Then the
intensity histogram of the image will have two main modes
separated by a valley at intensity T .

We can segment the image by the following operation

g(x ,y) =

{
1 if f (x ,y) > T

0 if f (x ,y)≤ T .

T is �xed: global thresholding.

T = T (x ,y): variable thresholding.
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Thresholding Example

Intensity
thresholding
can be
visualized using
the intensity
histogram of
the image
pixels.
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Thresholding Key Factors

Separation between histogram peaks.

Noise level.

Relative sizes of objects and background.

The uniformity of illumination source.

The uniformity of re�ectance of an object.
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E�ect of Noise on Thresholding

Noise
corruption can
change
histogram
properties.
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E�ect of Illumination and Re�ectance on Thresholding

Changes in
illuminant
and/or
re�ectance can
change the
histogram
properties.
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Global Tresholding

1 Set initial threshold T .

2 Segment image into two regions G1 and G2, with G1(x ,y) > T
and G2(x ,y)≤ T .

3 Compute average intensities m1 and m2 over G1 and G2

respectively.

4 Compute new threshold T = 1/2(m1 +m2).

5 Repeat steps 2 to 4 until the di�erence between successive
values of T becomes smaller than a �xed value ∆T .
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Global Tresholding Example

Fingerprint segmentation using thresholding.
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Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

1 Compute normalized histogram of input image with
components pi ,∀i ∈ [0,L−1].

2 Compute cumulative sums P1(k),∀k ∈ [0,L−1].

3 Compute cumulative means m(k),∀k ∈ [0,L−1].

4 Compute global intensity mean mG and class-conditional
means m1(k) and m2(k), ∀k ∈ [0,L−1].

5 Compute between-class variance σ2
B(k),∀k ∈ [0,L−1].

6 Find Otsu threshold k∗ as the value of k for which σ2
B(k) is

maximum. If various maxima are found, then average maxima
arguments to �nd one value.

7 Compute separability measure n(k∗) =
σ2
B(k)

σ2
G

.



Image Segmentation

Image Segmentation

Segmentation by Thresholding

Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

1 Compute normalized histogram of input image with
components pi ,∀i ∈ [0,L−1].

2 Compute cumulative sums P1(k),∀k ∈ [0,L−1].

3 Compute cumulative means m(k),∀k ∈ [0,L−1].

4 Compute global intensity mean mG and class-conditional
means m1(k) and m2(k), ∀k ∈ [0,L−1].

5 Compute between-class variance σ2
B(k),∀k ∈ [0,L−1].

6 Find Otsu threshold k∗ as the value of k for which σ2
B(k) is

maximum. If various maxima are found, then average maxima
arguments to �nd one value.

7 Compute separability measure n(k∗) =
σ2
B(k)

σ2
G

.



Image Segmentation

Image Segmentation

Segmentation by Thresholding

Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

1 Compute normalized histogram of input image with
components pi ,∀i ∈ [0,L−1].

2 Compute cumulative sums P1(k),∀k ∈ [0,L−1].

3 Compute cumulative means m(k),∀k ∈ [0,L−1].

4 Compute global intensity mean mG and class-conditional
means m1(k) and m2(k), ∀k ∈ [0,L−1].

5 Compute between-class variance σ2
B(k),∀k ∈ [0,L−1].

6 Find Otsu threshold k∗ as the value of k for which σ2
B(k) is

maximum. If various maxima are found, then average maxima
arguments to �nd one value.

7 Compute separability measure n(k∗) =
σ2
B(k)

σ2
G

.



Image Segmentation

Image Segmentation

Segmentation by Thresholding

Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

1 Compute normalized histogram of input image with
components pi ,∀i ∈ [0,L−1].

2 Compute cumulative sums P1(k),∀k ∈ [0,L−1].

3 Compute cumulative means m(k),∀k ∈ [0,L−1].

4 Compute global intensity mean mG and class-conditional
means m1(k) and m2(k), ∀k ∈ [0,L−1].

5 Compute between-class variance σ2
B(k),∀k ∈ [0,L−1].

6 Find Otsu threshold k∗ as the value of k for which σ2
B(k) is

maximum. If various maxima are found, then average maxima
arguments to �nd one value.

7 Compute separability measure n(k∗) =
σ2
B(k)

σ2
G

.



Image Segmentation

Image Segmentation

Segmentation by Thresholding

Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

1 Compute normalized histogram of input image with
components pi ,∀i ∈ [0,L−1].

2 Compute cumulative sums P1(k),∀k ∈ [0,L−1].

3 Compute cumulative means m(k),∀k ∈ [0,L−1].

4 Compute global intensity mean mG and class-conditional
means m1(k) and m2(k), ∀k ∈ [0,L−1].

5 Compute between-class variance σ2
B(k),∀k ∈ [0,L−1].

6 Find Otsu threshold k∗ as the value of k for which σ2
B(k) is

maximum. If various maxima are found, then average maxima
arguments to �nd one value.

7 Compute separability measure n(k∗) =
σ2
B(k)

σ2
G

.



Image Segmentation

Image Segmentation

Segmentation by Thresholding

Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

1 Compute normalized histogram of input image with
components pi ,∀i ∈ [0,L−1].

2 Compute cumulative sums P1(k),∀k ∈ [0,L−1].

3 Compute cumulative means m(k),∀k ∈ [0,L−1].

4 Compute global intensity mean mG and class-conditional
means m1(k) and m2(k), ∀k ∈ [0,L−1].

5 Compute between-class variance σ2
B(k),∀k ∈ [0,L−1].

6 Find Otsu threshold k∗ as the value of k for which σ2
B(k) is

maximum. If various maxima are found, then average maxima
arguments to �nd one value.

7 Compute separability measure n(k∗) =
σ2
B(k)

σ2
G

.



Image Segmentation

Image Segmentation

Segmentation by Thresholding

Otsu's Tresholding

This is a statistical method that seeks to maximize the between
class variance. It is implemented as follows:

1 Compute normalized histogram of input image with
components pi ,∀i ∈ [0,L−1].

2 Compute cumulative sums P1(k),∀k ∈ [0,L−1].

3 Compute cumulative means m(k),∀k ∈ [0,L−1].

4 Compute global intensity mean mG and class-conditional
means m1(k) and m2(k), ∀k ∈ [0,L−1].

5 Compute between-class variance σ2
B(k),∀k ∈ [0,L−1].

6 Find Otsu threshold k∗ as the value of k for which σ2
B(k) is

maximum. If various maxima are found, then average maxima
arguments to �nd one value.

7 Compute separability measure n(k∗) =
σ2
B(k)

σ2
G

.



Image Segmentation

Image Segmentation

Segmentation by Thresholding

E�ect of Noise Reduction on Thresholding

Original image
and its
histogram.

Segmentation
produced by
global
thresholding
(bottom left),
and Otsu's
thresholding
(bottom right).
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Otsu's Thresholding Example

Image with
Gaussian noise
(left column).

Segmentation
produced without
image denoising
(top right).

Segmentation
produced after
image denoising by
a 5×5 averaging
mask (bottom
right).
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Region-based Segmentation

We know that image segmentation aims to partition an image

into regions corresponding to objects or part of objects.

So far we have discussed segmentation by boundary detection

and segmentation by thresholding.

Here we introduce two methods that form regions in the image

plane, called region growing and region splitting and merging.
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Region Growing

Region growing groups pixels or regions into larger regions

using speci�c predicates or criteria for growth.

Region growing starts from speci�c points that are called

seeds.

The selection of criteria is a key element. Frequently used

properties include color, intensity and texture similarity.
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Region Growing Challenges

Selection of seeds can a�ect �nal results. Seeds can be

selected manually or using prior knowledge of the imaging

data.

The stopping rule is another factor. Because image

segmentation is an np-complete problem, the region growing

path is suboptimal and can lead to errors.

To address such challenges we can incorporate prior

information about the object's expected intensity, color,

texture or shape.



Image Segmentation

Image Segmentation

Region-based Segmentation

Region Growing Challenges

Selection of seeds can a�ect �nal results. Seeds can be

selected manually or using prior knowledge of the imaging

data.

The stopping rule is another factor. Because image

segmentation is an np-complete problem, the region growing

path is suboptimal and can lead to errors.

To address such challenges we can incorporate prior

information about the object's expected intensity, color,

texture or shape.



Image Segmentation

Image Segmentation

Region-based Segmentation

Region Growing Challenges

Selection of seeds can a�ect �nal results. Seeds can be

selected manually or using prior knowledge of the imaging

data.

The stopping rule is another factor. Because image

segmentation is an np-complete problem, the region growing

path is suboptimal and can lead to errors.

To address such challenges we can incorporate prior

information about the object's expected intensity, color,

texture or shape.



Image Segmentation

Image Segmentation

Region-based Segmentation

Region Growing Algorithm

Let, f (x ,y): input image, S(x ,y): seed array (1 for seeds, 0 for
background), Q(x ,y): predicate applied to each location (x ,y). Region
growing using 8-connectivity can be implemented as follows:

1 Find all connected components in S(x ,y) and erode connected
components down to one pixel.

2 Form an image fQ such that

fQ(x ,y) =

{
1 if Q(x ,y) is TRUE

0 otherwise.

3 Form an image g that will include the seeds and all the points
wi (xi ,yi ) for which i) fQ(xi ,yi = 1, and ii) wi is 8-connected to a
seed point.

4 Assign to each connected component a unique region label and form
the segmentation output.
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Region Growing Example

Region growing using threshold predicate.

Predicate:

Q(x ,y) =

{
TRUE if |f (x ,y)− si | ≤ T

FALSE otherwise.
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Region Splitting

These methods can be divided into two steps.

1 Recursively divide the image into sub-regions for which a
predicate Q is FALSE.

2 Merge neighboring sub-regions for which Q is TRUE.

A standard approach is to recursively divide the image into

quadrants and generate hierarchical structures that are called

quadtrees.
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Region Splitting and Merging

* If we apply splitting only, then we may produce adjacent regions

that are similar but belong to di�erent connected components.

* To address this we can add a merging step as follows:

1 Recursively split into four quadrants any region Ri for which

Q(Ri ) is FALSE.

2 Recursively merge any adjacent regions Ri and Rj for which

Q(Ri ∪Rj) is TRUE.

* Several variations of this technique have been proposed, that may

also employ graph theory.
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Region Growing Example

Region splitting and merging using a mean mRi
and standard

deviation σRi
- based predicate for a region Ri .

Predicate:

Q(Ri ) =

{
TRUE if σRi

> a AND 0<mRi
< b

FALSE otherwise.


