DELAWARE STATE UNIVERSITY

MTSC 852-PATTERN RECOGNITION

 $Fall\,2015$

Classes: ETV 134 (tentative), Tuesday, Thursday 16:30-17:45 Start date: Aug. 25, 2015 End date: Dec. 3, 2015

Instructor: Dr. Sokratis Makrogiannis Department of Mathematical Sciences Delaware State University OSCAR building, Room A206

Office: OSCAR A206 Office phone: 302-857-7058 E-mail: <u>smakrogiannis@desu.edu</u> Office Hours: Mon, Wed 13:00-14:30, Fri 13:00-14:00 and by appointment.

COURSE DESCRIPTION:

The student will learn the mathematical and statistical analysis techniques of pattern recognition and how to use these techniques to solve application-oriented problems. The student should become familiar with Bayesian Decision Theory, Parametric and Nonparametric Density Models, Linear Discriminants, Supervised and Unsupervised Learning, and Theory on Classifier Performance Estimation.

TEXT:

*Required:*R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, 2nd ed., Wiley, 2001. *Recommended:*C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed., Springer, 2006.

PREREQUISITES:

Advanced Probability Theory 25-541, or consent from instructor.

COURSE OBJECTIVES:

Upon completion of the course, students will be familiar with:

- 1. Classification Fundamentals,
- 2. Bayesian Decision Theory,
- 3. Maximum-Likelihood and Bayesian Estimation,
- 4. Nonparametric Density Estimation,
- 5. Linear Discriminant Analysis,
- 6. Classification Estimation and Comparison Techniques,
- 7. Unsupervised Clustering and Bayesian Learning.

Homework and Grades Overview:

- 1. There will be homework assignments assigned on a regular basis that will not be collected for grading. Homework solutions will be made available for each assignment.
- 2. There will be 5-6 project assignments -typically including problems and programming assignments- which will be done on an individual basis. For each project assignment, you are to turn in a brief report which should include a description of the problem, a description of your approach, and your evaluation of the results. Details on the deliverables will be given for each assignment respectively.
- 3. There will be a closed-book and closed-notes midterm examination.
- 4. There will be a closed-book and closed-notes comprehensive final examination. A portion of the final examination may also be a take-home examination.
- 5. There will be a term project assignment due toward the end of semester. It may be a literature study on a selected topic and/or include the design of a Pattern Recognition system to solve a specific problem. The term project will be presented in class following the standards of a scientific meeting (slide presentation followed by questions).
- 6. Your overall grade for the semester will be based upon the assignments and exams as defined below.

Type of Assessment	Weight of Assessment
Assignments and Projects	40%
Term Project	10 %
Midterm Exam	20%
Final Exam	25%
Participation/Attend ance	5%

Percentage	Grades
90 - 100 %	Α
80 - 89 %	В
70 – 79%	С
60 - 69%	D

Reading Assignments:

Reading assignments will be given for each lecture period. Students are expected to complete the reading assignments prior to each lecture. Additional material will also be developed in class lectures, so missing class is not advisable.

ATTENDANCE POLICY:

Students are expected to attend all classes. Students are expected to arrive on time and be prepared for the class. Attendance may be taken at the beginning of each class. Please notify in advance if you are going to miss a class. Absence does not justify missed assignment due dates and missed tests/exams. If you miss a class, you are responsible for all material covered or assigned in class.

LATE WORK:

Project assignments are due on their due date at (or before) the start of class; late assignments lose 33% per day of delay; this implies a score of 0% for assignments delayed more than 2 days. If you are unable to hand in an assignment by the deadline, you must discuss it with me before the deadline.

MAKEUP EXAMS:

If any student misses an exam because of an extreme emergency, the student needs to make up the exam **within a week** to receive credit. Exams cannot be made up unless there is an extreme and documented emergency.

GROUP WORK AND ACADEMIC INTEGRITY:

While students are encouraged to discuss the assignments, each student is evaluated for individual effort in assignments and tests (i.e., sharing code is not allowed), unless there are specific instructions for group work. Individual assignments which are too similar will receive a zero. We should all strive to maintain academic integrity in graduate education and research efforts as stated in <u>DSU's graduate student handbook</u>.

Week #	Week Beginning Date	Description	Work Due	Text Reference
1	8/24/2015	Course Overview		PC Ch. 1
		Introduction		
		Pattern Recognition and Applications		
		Linear Algebra		PC A.2
2 8/3	8/31/2015	Probability and Statistics		PC A.4
		Bayesian Decision Theory		PC Ch. 2
		Basic Principles and Terminology		
		Minimum Error Rate Classification		
3		Classifiers, Discriminant Functions,	A1	
	9/7/2015	Decision Surfaces		
		Normal Density		
4	9/14/2015	Discriminant Functions for Normal		
		Density		
		Signal Detection Theory and Operating		
		Characteristics		
5 9/2		Bayesian Belief Networks (*)	A2	
	9/21/2015	Parametric Estimation Techniques		PC Ch. 3
		Maximum Likelihood Estimation		
		Bayesian Estimation		
6	9/28/2015	Mid-Term Exam	A3	
7	10/5/0015	Problems of Dimensionality		
		Component Analysis and Discriminants		
	10/5/2015	(*)		
		Expectation-Maximization (*)		

(TENTATIVE) SCHEDULE:

8		Nonparametric Estimation Techniques	A4	PC Ch. 4
	10/12/2015	Parzen Kernel Estimation		
		k-NN Estimation		
		k-NN Rule		
9		k-NN Classification		
		Metrics		
	10/10/2015	Linear Discriminant Functions		PC Ch. 5
	10/19/2013	Linear Discriminant Functions		
		Two-category Linearly Separable Case		
		Nonseparable Behaviour		
10		MSE methods	A5	
		Linear Programming (*)		
		SVM		
	10/26/2015	Algorithm-Independent Machine		PC Ch. 9
	10/20/2013	Learning		
		Lack of Superiority of Any Classifier		
		Bias and Variance		
		Resampling for Estimating Statistics		
11	11/2/2015	Resampling for Classifier Design		
		Classifier Estimation		
		Combining Classifiers (*)		
12	11/9/2015	Unsupervised Learning and Clustering	A6	PC Ch. 10
		Mixture Densities		
		Max-likelihood Estimates		
		Normal Mixtures		
13	11/16/2015	Unsupervised Bayesian Learning		
		Similarity Measures		
		Clustering Criterion Functions		
		Hierarchical Clustering (*)		
14		Component Analysis (*)		
	11/23/2015	Advanced Topics in Pattern Recognition		PC Ch. 10, PR
		(*)		literature
		Kernel PCA/LDA		
		Manifold Learning (ISOMAP, Laplacian		
		Eigenmaps, LTSA, LLE, etc)		
15	11/30/2015	Case studies (*)	TP	PR literature
		Diagnostics in Medicine		
		Computer Vision		
		Biometrics		
16	12/7/2015	Review and Final Exam		

(*) Pending on time availability and class interest

NOTE:

If you have a disability which is documented with the Student Accessibility Services Office and wish to discuss academic accommodations with me, please contact me as soon as possible.