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Pattern Recognition Basics

Pattern Recognition

De�nitions

The research �eld that solves problems for recognition and
classi�cation of objects represented by sets of measurements

"The process of giving names ω to observations x" -Schümann

"A problem of estimating density functions in a high-dimensional
space and dividing the space into regions of catergories or classes"
-Fukunaga

"The assignment of a physical object or event to one of pre-speci�ed
categories" -Duda and Hart
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Pattern Recognition Systems

Components of a Pattern Recognition System

Main components

Sensors

Preprocessing

Feature Extraction

Classi�cation

Performance Evaluation
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Pattern Recognition Systems

Pattern Recognition Systems

Main components of Brain Atrophy Recognizer
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Pattern Recognition Systems

Sensing

Di�erent sensors mainly transducers can be used such as cameras,
microphone arrays, MRI or CT scanners, �ngerprint devices, etc

Characteristics and limitations of transducers may pose challenges to
pattern recognition

Usual characteristics are bandwidth, resolution, quantization,
electronic noise, distortions, signal-to-noise ratio, etc
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Pattern Recognition Systems

Segmentation and Grouping

The goal of this step is to separate the di�erent objects

That is, to delineate visual objects in images or videos, separate
characters in manual scripts, separate phonemes for voice recognition,
etc

Segmentation is a complicated problem that depends on the domain
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Pattern Recognition Systems

Feature Extraction/Dimensionality Reduction

Goal of a feature extractor is to
create object representations
that are similar for objects of the
same class and dissimilar for
objects of di�erent classes
Therefore, we are seeking to
compute distinguishing, or
discriminant, features
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Pattern Recognition Systems

Feature Extraction/Dimensionality Reduction

Another desired property of features mainly extracted from images is
invariance to geometric transformations such as translation, rotation
scaling, or nonlinear deformations, and resiliency to occlusions
In speech recognition we are looking for features that are invariant to
time translations and to changes in amplitude
Feature computation is also domain-speci�c
A related research area deals with the selection/computation of the
most discriminant features for classi�cation; this is called
dimensionality reduction
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Pattern Recognition Systems

Feature Extraction Example

Computation of texture
features from an
abdominal CT scan
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Pattern Recognition Systems

Classi�cation

The classi�er uses as input the feature vector that represents an object
and produces a category label for the object
Classi�cation is a major part of this work
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Pattern Recognition Systems

Classi�cation

One challenge in classi�cation is the variability in feature values that
reduce the separation between di�erent categories
Variability may be caused by complexity or noise
The term noise refers to any randomness in measurements that our
model cannot account for
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Pattern Recognition Systems

Classi�cation Decision and Performance Evaluation

This component uses the classi�er's output to make a decision

One criterion for making a classi�cation decision is the error rate. The
error rate is the percentage of new patterns assigned to the wrong
category. Therefore we seek to minimize the error rate in our decision

Often times we associate a risk with each classi�cation decision. This
can be used to compute a total cost that will help make a decision

More recent approaches multiple classi�ers and combine their
decisions to reduce the classi�cation error rates
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Pattern Recognition Systems

Pattern Recognition Problems

Machine vision
Visual inspection
Security

Character recognition
Automated mail sorting
Signature veri�cation

Computer-aided diagnosis
Breast cancer diagnosis
EEG, ECG signal analysis

Speech recognition
Human Computer Interaction
systems
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Pattern Recognition System Design Cycle

Pattern Recognition System Design Cycle

In this section we outline
the procedure that is
followed to design a
pattern classi�cation
system

It is called a cycle
because the design
sequence is repeated
until we reach the
desired outcome
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Pattern Recognition System Design Cycle

Data Collection

Data collection has a signi�cant impact on the classi�er design in
terms of feasibility and costs

We often conduct a feasibility study with a small set of data to design
our system, then perform a full scale study to estimate performance

One crucial question is, how many training and testing samples are
needed to design a system that can be used for real applications?
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Pattern Recognition System Design Cycle

What Features to Compute

This is a critical and domain-speci�c problem

Prior knowledge may help in this stage. For example, when we design
a face recognition system, we can use our knowledge of face structure
like topological relations between the nose, lips, and eyes
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Pattern Recognition System Design Cycle

Which Models to Use

In this stage we develop criteria for the selection of mathematical
models to represent each class

The main question is how can we measure or predict if a hypothesized
model approximates well the underlying true model of our patterns?

Usually the answer depends on the domain; we can study the
complexity, dimensionality, variability, and population of patterns
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Pattern Recognition System Design Cycle

Training Stage

Training is the process of determining the classi�er using data that we
call training data

These are called learning from example techniques
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Pattern Recognition System Design Cycle

Performance Evaluation

This is a necessary component for determining the feature set, and
classi�cation model.

An additional objective is to identify the potential for further
improvement and to address over�tting
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Pattern Recognition System Design Cycle

Computational Complexity

One consideration is how an algorithm scales as a function of the
feature dimensionality, number of objects, or number of categories

Sometimes the performance of a recognizer is excellent but it is not
possible to implement

We are mostly concerned with the complexity for making a decision;
not so much for the complexity of learning stage that is executed
o�-line
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Learning Techniques

Learning Techniques

Main categories

Supervised learning

Unsupervised learning

Reinforcement learning
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Learning Techniques

Supervised Learning

In supervised learning, we use a training data set with patterns of
known categories so we can �t our models and/or adapt the classi�er
parameters
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Learning Techniques

Unsupervised Learning

In unsupervised learning there exists no training set and the system
learns forms clusters of the input patterns using optimization
algorithms

Relevant questions:
How do we select the number of clusters?
How do we select the cluster models?
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Learning Techniques

Reinforcement Learning

In this type of learning, the only given feedback is that the tentative
category is right or wrong, without further information
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Learning Techniques

Pattern Recognition Example

Problem Description

Suppose that we want to build a
system for automatic recognition
of sea bass and salmon in a �sh
packing plant

The �sh are placed on a
conveyor belt and a �xed camera
acquires images of �sh on the
moving conveyor belt

We decide to use the physical
characteristics such as length,
width, brightness, position of the
mouth of �sh to separate the
two species
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Learning Techniques

Pattern Recognition Example

In pattern recognition terms, we are asked to build a classi�er of �sh
into two categories, that is salmon and sea bass

The physical characteristics that we want to measure are called
features

To describe each �sh type we develop mathematical models

We �nd the best matching model for each �sh to perform classi�cation
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Learning Techniques

Pattern Recognition Example

Main stages

Pre-processing: this stage can be used to improve image quality,
reduce image noise, apply segmentation to separate the �sh, so we can
compute more accurate features
Feature computation or extraction is the process of measuring the
characteristics of �sh from the sensor data, for example lightness,
length, width, number of �ns, etc
The model refers to the probability density model for sea bass and for
salmon and the type of boundary between these classes, that is linear,
quadratic, multi-modal, etc
Performance evaluation is the process of calculating the probability of
erroneous classi�cation decisions
Generalization studies if the selected recognizer will sustain a good
performance under real conditions, i.e., a diverse set of unlabeled
patterns
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Learning Techniques

Pattern Recognition Example

Feature Extraction

Feature computation or extraction is the process of measuring the
characteristics of �sh from the sensor data, for example lightness,
length, width, number of �ns, etc
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Learning Techniques

Pattern Recognition Example

Classi�er Generalization

The model refers to the probability density model for sea bass and for
salmon and the type of boundary between these classes, that is linear,
quadratic, multi-modal, etc
Generalization studies if the selected recognizer will maintain a good
performance level under real conditions, i.e., a diverse set of unlabeled
patterns
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Notation and Preliminaries

Notation and Preliminaries

d-dimensional vector: x=

 x1
...

xn


Transpose of x: xT = (x1x2 . . .xd)

n×d matrix: M =


m11 m12 . . . m1d

m21 m22 . . . m2d
...

...
. . .

...

mn1 mn2 . . . mnd



Transpose of M: MT =


m11 m21 . . . mn1

m12 m22 . . . mn2
...

...
. . .

...

m1d m2d . . . mnd


Symmetric matrix, if mij =mji

Antisymmetric matrix, if mij =−mji
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Notation and Preliminaries

Notation and Preliminaries

Multiply vector by matrix: Mx= y
m11 m12 . . . m1d

m21 m22 . . . m2d
...

...
. . .

...

mn1 mn2 . . . mnd




x1
x2
...

xn

=


y1
y2
...

yn


or,

yi =
d

∑
j=1

mijxj
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Inner Product

Inner Product

The inner product of two vectors x,y is a scalar:

x ·y = xTy = yTx=
d

∑
i=1

xiyi

Euclidean norm: ‖x‖= (xTx)
1/2

Angle between x and y: cosθ = xT y
‖x‖‖y‖

xTy = 0→ vectors are orthogonal

‖xTy‖= ‖x‖‖y‖→ vectors are colinear

Cauchy Schwartz inequality: ‖xTy‖ ≤ ‖x‖‖y‖
Vectors [x1,x2, . . . ,xn] are linearly independent, if no vector in the set

can be written as a linear combination of any of the others
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Outer Product

Outer Product

Multiply vector by matrix: M = xyT
x1
x2
...

xd

(y1y2 . . .yn) =


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
...

. . .
...

xdy1 xdy2 . . . xdyn
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Derivatives of Matrices

Derivatives of Matrices

Let f (x) be a scalar-valued function of d variables x= (x1x2 . . .xd)
T

Gradient of f : ∇f (x) =

 ∂ f /∂x1
...

∂ f /∂xd


Let f(x) : Rd → Rn. Its Jacobian matrix is:

J(x) = ∂ f(x)
∂x

=

 ∂ f1/∂x1 . . . ∂ f1/∂xd
...

...
. . .

∂ fn/∂x1 . . . ∂ fn/∂xd


Let matrix M with elements dependent on θ . Its derivative in θ is :

∂M
∂θ

=

 ∂m11/∂θ . . . ∂m1d/∂θ

...
...

. . .

∂mn1/∂θ . . . ∂mnd/∂θ


Derivative of inverse: ∂

∂θ
M−1 =−M−1 ∂M

∂θ
M−1

Derivative identities:
∂

∂x
[Mx] =M, ∂

∂x

[
yTx

]
= ∂

∂x

[
xTy

]
= y, ∂

∂x

[
xTMx

]
=
[
M+MT

]
x
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Derivatives of Matrices

Taylor Expansions

Taylor expansion for f (x) about x0:

f (x) = f (x0)+
df

dx

∣∣∣∣
x=x0

(x−x0)+
1

2!

d2f

dx2

∣∣∣∣
x=x0

(x−x0)
2+O

(
(x−x0)

3
)

Taylor expansion for vector f (x) about x0:

f (x)= f (x0)+

[
df

dx

]T
x=x0

(x−x0)+
1

2!
(x−x0)

T

[
d2f

dx2

]T
x=x0

(x−x0)+O
(
‖x−x0‖3

)
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Determinant, Trace, Rank

Determinant, Trace, Rank

Determinant of a d ×d matrix A: |A|= ∑
d
k=1 aik |Ai |k |(−1)k+i

Ai |k : minor formed by removing the ith row and kth column of A
Trace is the sum of diagonal elements:

tr [A] =
d

∑
k=1

akk

Rank of a matrix is the number of linearly independent rows or

columns

A square matrix is non-singular ↔ its rank equals the number of rows

(or columns)

A non-singular matrix has a non-zero determinant
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Matrix Inversion

Matrix Inversion

Suppose square matrix Md×d
Inverse of M is M−1: MM−1 =M−1M = I
M−1 exists ↔ M is non-singular

M−1 can be also written as M−1 = Adj[M]
|M|

Adj [M]: matrix whose i , j entry equals to cofactor Ci ,j = (−1)j+iMj |i
Pseudo-inverse of M, denoted by M†, is used when A−1 does not

exist, or when M is not square

If MTM is non-singular, pseudoinverse M† is M† = [MTM]
−1

MT

Observe that M†M = I
We use pseudo-inverse to solve least squares problem

Inverse of product of square matrices M,N: [MN]−1 = N−1M−1
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Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues

Suppose square matrix Md×d
Frequently, we need to solve linear equations of the form

Mx= λx⇒ (M−λ I)x= 0⇒

{
x= 0 trivial case

M−λ I= 0 non-trivial case

M−λ I= 0⇒ |M−λ I|= 0⇒ λ
d +a1λ

d−1+ . . .+ad−1λ +ad = 0

For each root we solve the set of linear equations

Solution vectors ei are called eigenvectors, while corresponding

solution scalars λi are called eigenvalues

M is real and symmetric → there exist d solution vectors

{e1,e2, . . . ,ed} and d corresponding eigenvalues {λ1,λ2, . . . ,λd}
When multiplied by M, the eigenvectors change in magnitude but not

orientation: Mei = λiei
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Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues Properties

Suppose that we have found the eigendecomposition: Mei = λiei .

The following properties apply

tr [M] = ∑
d
i=1

λi

|M|= ∏
d
i=1

λi

M is non-singular → all eigenvalues are non-zero

M is real and symmetric → all eigenvalues are real and eigenvectors are

orthogonal

M is positive de�nite → all eigenvalues are positive
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Discrete Random Variables

Discrete Random Variables

Let x be a random variable with x ∈X and X = {v1,v2, . . . ,vm}
Then pi is probability of x = vi

pi = Pr [x = vi ], i = 1, . . . ,m

Axioms

pi ≥ 0

m

∑
i=1

pi = 1

Probability Mass Functions

P(x)≥ 0

∑
x∈X

P(x) = 1
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Discrete Random Variables

Expected Values

Mean of random variable x :

E[x ] = µ = ∑
x∈X

xP(x) =
m

∑
i=1

vipi

For a function f (x):

E [f (x)] = ∑
x∈X

f (x)P(x)

Variance E
[
(x−µ)2

]
E
[
(x−µ)2

]
= ∑

x∈X
(x−µ)2P(x) = Var[x ] = σ

2

We can show that

Var[x ] = E[x2]− [E[x ]]2
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Pairs of Discrete Random Variables

Pairs of Discrete Random Variables

Let x ,y be random variables such that x ∈X = {v1,v2, . . . ,vm} and
y ∈ Y = {w1,w2, . . . ,wn}
Joint probability:

pij = Pr [x = vi ,y = wj ]

Axioms:

pij ≥ 0,
m

∑
i=1

n

∑
j=1

pi ,j = 1

Joint probability mass function:

P(x ,y)≥ 0, ∑
x∈X

∑
y∈Y

P(x ,y) = 1

Marginal distributions:

Px(x) = ∑
y∈Y

P(x ,y), Py (y) = ∑
x∈X

P(x ,y)
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Pairs of Discrete Random Variables

Statistical Independence

De�nition (Statistically independent variables)

Random variables x ,y are statistically independent, if and only if

P(x ,y) = Px(x) ·Py (y)
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Pairs of Discrete Random Variables

Expected Values of Functions of Two Variables

For a function f (x ,y):

E [f (x ,y)] = ∑
x∈X

∑
y∈Y

f (x ,y)P(x ,y)

Means:

E[x ] = µx = ∑
x∈X

∑
y∈Y

xP(x ,y), E[y ] = µy = ∑
x∈X

∑
y∈Y

yP(x ,y)

E[x] = µ = ∑
x∈X ×Y

xP(x)

Variances:

Var[x ] = σ
2
x = E

[
(x−µx)2

]
, Var[y ] = σ

2
y = E

[
(y −µy )2

]
Covariance:

σ
2
xy = E [(x−µx)(y −µy )] = ∑

x∈X
∑
y∈Y

(x−µx)(y −µy )P(x ,y)
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Pairs of Discrete Random Variables

Expected Values of Functions of Two Variables

Corollary

x ,y stat. independent → σxy = 0

Corollary

σxy = 0 → x ,y uncorrelated

Result

x ,y stat. independent →
E [f (x)g(y)] = E [f (x)]E [g(y)]

Cauchy-Schwartz inequality:

σ
2
xy ≤ σ

2
x σ

2
y , ρ ∈ [−1,1]

Correlation Coe�cient ρ :

ρ =
σxy

σxσy

Covariance matrix:

Σ = E
[
(x−µx)(y−µy)T

]
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Pairs of Discrete Random Variables

Conditional Probability

Conditional probability of x given y :

Pr [x = vi |y = wj ] =
Pr [x = vi ,y = wj ]

Pr [y = wj ]

By use of probability mass:

P(x |y) =
P(x ,y)

Py (y)

Result

x ,y stat. independent → P(x |y) = P(x)
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Pairs of Discrete Random Variables

Law of Total Probability and Bayes Rule

Law of total probability: P(y) = ∑x∈X P(x ,y) = ∑x∈X P(y |x)P(x)
Based on conditional probability de�nition:

P(x ,y) = P(y |x)P(x)
P(x ,y) = P(x |y)P(y)

}⇒ P(x |y) =
P(y |x)P(x)

P(y)

Bayes rule:

P(x |y) =
P(y |x)P(x)

P(y)
posterior =

likelihood ×prior

evidence
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Vector Random Variables

Vector Random Variables

We use vector notation to generalize to more variables, i.e.

x = {x1,x2, . . . ,xd}
Joint probability mass function P(x) Axioms

P(x)≥ 0, ∑
x∈Rd

P(x) = 1

Statistically independent xi: P(x) = ∏
d
i=1Pxi (xi )

Bayes rule: P(x1|x2) = P(x2|x1)P(x1)
P(x2)

= P(x2|x1)P(x1)
∑x1∈X1

P(x2|x1)P(x1)

Example

P(x1,x4) = ∑
x2

∑
x3

∑
x5

P(x1,x2,x3,x4,x5)

P(x1,x2|x3) =
P(x1,x2,x3)

P(x3)
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Continuous Random Variables

Continuous Random Variables

Single random variable

Let x be a continuous random variable

Probability density function (PDF) p(x): Pr [x ∈ (a,b)] =
∫ b
a p(x)dx

PDF must satisfy: p(x)≥ 0,
∫

∞

−∞
p(x)dx = 1

Expected value: E [f (x)] =
∫

∞

−∞
f (x)P(x)dx

Mean: E [x ] =
∫

∞

−∞
xP(x)dx

Variance: E
[
(x−µ)2

]
=

∫
∞

−∞
(x−µ)2P(x)dx
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Continuous Random Variables

Continuous Random Variables

Multivariate case

Let x be vector of continuous random variables x = {x1,x2, . . . ,xd}
Probability density function (PDF) p(x):
Pr [x ∈X1× . . .×Xd ] =

∫
x∈X1×...×Xd

p(x)dx

PDF must satisfy: p(x)≥ 0,
∫

∞

−∞
p(x)dx = 1

Expected value:

E [f (x)] =
∫

∞

−∞
f (x)P(x)dx =

∫
∞

−∞
. . .

∫
∞

−∞
f (x)P(x)dx1 · · ·dxd

Mean: E [x] =
∫

∞

−∞
xP(x)dx

Covariance matrix:

Σ = E
[
(x−µx)(y−µy)T

]
=

∫
∞

−∞
(x−µ)(x−µ)TP(x)dx

Stat. independent variables in x ⇒ p(x) = ∏
d
i=1P(xi ), and Σ is

diagonal
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Normal Distributions

Normal Distributions

Normal density (1-D)

Probability density function: p(x) = 1√
2πσ

e−
(x−µ)2

2σ2 = N(µ,σ)

Expectations: E [1] =
∫

∞

−∞
P(x)dx = 1, E [x ] =

∫
∞

−∞
xP(x)dx = µ

E
[
(x−µ)2

]
=

∫
∞

−∞
(x−µ)2P(x)dx = σ2

Approximations of cumulative probabilities: Pr [|x−µ| ≤ σ ]' 0.68,
Pr [|x−2µ| ≤ σ ]' 0.95, Pr [|x−3µ| ≤ σ ]' 0.997

Standardized random variable: u = x−µ

σ
⇒ p(u) = 1√

2πσ
e−

u2

2 = N(0,1)

Theorem (Central Limit Theorem)

The distribution of the sum of d independent random variables approaches

the normal distribution (under various conditions)
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Introduction

Preliminaries

The Bayesian Decision Theory is a statistical approach to pattern

classi�cation

This approach assigns a class label to a pattern by quantifying the

tradeo�s among the di�erent decisions

Bayesian Decision Theory poses the decision problem in probabilistic

terms

It assumes that all relevant probability information is known
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Introduction

Main concept

The decisions minimize a total expected "risk"

Straightforward risk is the classi�cation error

The risk is associated with the cost of making a speci�c decision
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Introduction

Terminology

Consider the problem: an observer watches �sh arrive on a conveyor belt.

There are two kinds of �sh: salmon and sea bass. The objective is to

predict the type of �sh that will appear next, assuming that the sequence is

random

State of nature ω is a random variable that

describes the class, that is ω1 for salmon and

ω2 for sea bass

Prior probabilities P(ωj): probabilities for states
of nature (categories)

Feature vector x : vector consisting of

measurements for patterns, e.g. �sh lightness
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Introduction

Terminology

Consider the problem: an observer watches �sh arrive on a conveyor belt.

There are two kinds of �sh: salmon and sea bass. The objective is to

predict the type of �sh that will appear next, assuming that the sequence is

random

Probability density function p(x): How frequently a pattern with value

x occurs

Class-conditional probability density p(x |ωj): Frequency of occurrence

of a feature x for a speci�c class label ωj . Known as likelihood.

Probability of a lightness value for a speci�c �sh type

Posterior probability density p(ωj |x): Probability of class ωj , given a

measurement x . Probability of occurrence of a speci�c �sh type, given

the lightness value
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Introduction

Class-conditional Densities

A key process in pattern classi�cation is to estimate the class-conditional

density for each category, also referred to as likelihood
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Introduction

Decision Based on Priors Only

Decide ω1 if P(ω1) > P(ω2), otherwise decide ω2

This rule always makes the same decision

It favors the most likely class

P(error) = min[P(ω1),P(ω2)]

It may be applied if we know only the prior probabilities P(ωj), where
ωj is the state of nature
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Introduction

Bayes formula

Suppose that in addition to P(ωj), we have obtained measurements x
and we know the likelihoods p(x |ωj)

Then the Bayes rule yields

P(ωj |x) =
p(x |ωj)P(ωj)

p(x)
, where p(x) =

2

∑
j=1

p(x |ωj)P(ωj)

This formula be expressed as posterior = likelihood×prior
evidence
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Introduction

Bayes Decision Rule

Decide ω1 if P(ω1|x) > P(ω2|x); otherwise decide ω2

Decide ω1 if p(x |ω1)P(ω1) > p(x |ω2)P(ω2); otherwise decide ω2

Figure: Posterior probabilities corresponding to class-conditionals of previous
�gure for P(ω1) = 2/3 and P(ω2) = 1/3
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Introduction

Probability of Error

The probability of error when we make a decision using the Bayesian

rule is

P(error |x) =

{
P(ω1|x), if we decide ω2

P(ω2|x), if we decide ω1

Hence, P(error |x) = min[P(ω1|x),P(ω2|x)]

This rule minimizes the average probability for error because

P(error) =
∫

∞

−∞

P(error ,x)dx =
∫

∞

−∞

P(error |x)p(x)dx
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Bayesian Decision Theory for Continuous Features

Bayesian Decision Theory Generalization

Let Ω = {ω1,ω2, ...,ωc} be the set of c states of nature or classes,

and A = {a1,a2, ...,ac} be the set of actions. Then λ (αi |ωj) is the

loss caused by taking action αi for a true class ωj .

Let x ∈ RD be a D-dimensional feature vector corresponding to

measurements

Then the Bayes formula is de�ned as

P(ωj |x) =
p(x|ωj)P(ωj)

p(x)
, where p(x) =

c

∑
j=1

p(x|ωj)P(ωj)
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Bayesian Decision Theory for Continuous Features

Loss Function

We assume that after an observation x we take action αi , when the

true state of nature is ωj . Then the incurred loss for this action is

λ (αi |ωj)

We de�ne as conditional risk R(αi |x) the expected loss given by

R(αi |x) = ∑λ (αi |ωj)P(ωj |x)
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Bayesian Decision Theory for Continuous Features

Bayes Risk

General decision rule is a function α(x) with α : RD → A

The overall risk R is the expected loss incurred by a speci�c decision

estimated by

R =
∫

R(α(x)|x)p(x)dx

Hence, to minimize overall risk, we compute the conditional risk

R(αi |x) for i = 1, ...,α and choose the action αi that minimizes

R(αi |x)

The corresponding overall risk R∗ is called Bayes risk and denotes the

optimal classi�cation performance
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Bayesian Decision Theory for Continuous Features

Two-category Classi�cation

Assumptions

Classi�cation problem with two classes ω1 and ω2.

αi : decide ωi , for i = 1,2

λij = λ (αi |ωj)

Bayes Decision Rule

R(α1|x) = λ11P(ω1|x) + λ12P(ω2|x)

R(α2|x) = λ21P(ω1|x) + λ22P(ω2|x)

Rule: Decide ω1 if R(α1|x) < R(α2|x); otherwise decide ω2

Decide ω1 if

λ11P(ω1|x) + λ12P(ω2|x) < λ21P(ω1|x) + λ22P(ω2|x)

(λ21−λ11)P(ω1|x) > (λ12−λ22)P(ω2|x)
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Bayesian Decision Theory for Continuous Features

Likelihood Ratio Test (LRT) for Two Categories

Bayes Decision Rule

Decide ω1 if

λ11P(ω1|x) + λ12P(ω2|x) < λ21P(ω1|x) + λ22P(ω2|x)⇔

(λ21−λ11)P(ω1|x) > (λ12−λ22)P(ω2|x)⇔

(λ21−λ11)p(x|ω1)P(ω1) > (λ12−λ22)p(x|ω2)P(ω2)⇔

p(x|ω1)

p(x|ω2)
>

(λ12−λ22)

(λ21−λ11)

P(ω2)

P(ω1)
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Bayesian Decision Theory for Continuous Features

Likelihood Ratio Example

Figure: Bayesian decision theory components: class-conditionals, posterior
probabilities, and likelihood ratio (left to right)
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Minimum-Error-Rate Classi�cation

Minimum Error-rate Classi�cation

Assumptions

Classi�cation problem with c classes in Ω = {ω1,ω2, ...,ωc}
αi : decide ωi , for i = 1, ..,c

λij = λ (αi |ωj), where λ (αi |ωj) =

{
0, if i = j

1, if i 6= j
for i , j = 1, ...,c

Conditional Risk and Bayes Decision Rule

R(αi |x) = ∑
c
j=1λijP(ωj |x) = ∑

c
j 6=i P(ωj |x) = 1−P(ωi |x)

Rule: Decide ωi if

R(αi |x) < R(αj |x),∀j 6= i ⇔

1−P(ωi |x) < 1−P(ωj |x),∀j 6= i ⇔

P(ωi |x) > P(ωj |x),∀j 6= i
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Minimum-Error-Rate Classi�cation

Maximum A Posteriori (MAP) Criterion

According to the previous result the decision rule for Minimum

Error-rate Classi�cation is:

Decide ωi , if P(ωi |x) > P(ωj |x),∀j 6= i ⇔

Decide ωi , if
P(ωi |x)

P(ωj |x)
> 1,∀j 6= i

This is also known as Maximum A Posteriori (MAP) criterion as it

seeks to maximize the posterior probability P(ωi |x)
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Minimum-Error-Rate Classi�cation

Maximum Likelihood (ML) Criterion

If in addition to a binary loss function we have equal priors, that is,

P(ωi ) = P(ωj),∀i 6= j , then the decision rule becomes

Decide ωi , if
P(ωi |x)

P(ωj |x)
> 1,∀j 6= i ⇔

Decide ωi , if
p(x|ωi )P(ωi )

p(x|ωj)P(ωj)
> 1,∀j 6= i ⇔

Decide ωi , if
p(x|ωi )

p(x|ωj)
> 1,∀j 6= i

This is also known as Maximum Likelihood (ML) criterion as it seeks

to maximize the likelihood p(x|ωi )
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Classi�ers, Discriminant Functions, Decision Surfaces

Discriminant Functions

A classi�er can be represented by a set of discriminant functions

gi (x), i = 1, ...,c corresponding to each state of nature or category.

Then the decision rule becomes:

Assign feature vector x to class ωi , if gi (x) > gj(x) ∀j 6= i

Then the classi�er can be considered to be a network or machine that

computes c discriminant functions and makes a decision using a

maximum operator.

S. Makrogiannis (DSU) Bayesian Decision Theory October 6, 2015 3 / 25



Classi�ers, Discriminant Functions, Decision Surfaces

Bayes Classi�er with Multiple Categories

A Bayes classi�er can also be described using discriminant functions.

For the general case that minimizes conditional risks gi (x) =−R(αi |x)

For the MAP �or minimum-error-rate� criterion gi (x) = P(ωi |x)
With some more operations we can produce other equivalent MAP

discriminant functions

gi (x) = P(ωi |x) =
p(x|ωi )P(ωi )

∑
c
j=1 p(x|ωj)P(ωj)

gi (x) = p(x|ωi )P(ωi )

gi (x) = lnp(x|ωi ) + lnP(ωi )

For the ML criterion gi (x) = p(x|ωi )
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Classi�ers, Discriminant Functions, Decision Surfaces

Two Categories

Suppose a problem with two categories ω1 and ω2.

Then we can de�ne a single discriminant function by

g(x) = g1(x)−g2(x)

The decision rule is:

Decide ω1 if g(x) > 0; otherwise decide ω2

For the MAP �or minimum-error-rate� criterion it follows that

g(x) = P(ω1|x)−P(ω2|x)⇔

g(x) = lnp(x|ω1) + lnP(ω1)− lnp(x|ω2)− lnP(ω2)⇔

g(x) = ln
p(x|ω1)

p(x|ω2)
+ ln

P(ω1)

P(ω2)
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Classi�ers, Discriminant Functions, Decision Surfaces

Decision Regions and Boundaries

Decision rules divide the feature space in Decision Regions

Ri , i = 1,2, ...,c , where c is the number of categories

The Decision Regions (Ri ,Rj) are separated by Decision Boundaries

on which gi (x) = gj(x).
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Classi�ers, Discriminant Functions, Decision Surfaces

Decision Regions and Boundaries
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The Normal Density

Introduction

As explained in previous sections, we can design a Bayesian classi�er if

we know the likelihood p(x|ωi) and priors P(ωi ) for each category i

Among all density functions the multivariate Gaussian model is very

popular

Normal density models are popular mainly because of the Central Limit

Theorem, and the fact that the normal density is analytically tractable
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The Normal Density

Univariate Normal Density

Density function also symbolized by N(µ,σ): p(x) = 1√
2πσ

e−
(x−µ)2

2σ2

Expected value: µ ≡ E [x ] =
∫

∞

−∞
xp(x)dx

Variance: σ ≡ E [(x−µ)2] =
∫

∞

−∞
(x−µ)2p(x)dx

Entropy: H(p(x)) =−
∫

∞

−∞
p(x) lnp(x)dx
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The Normal Density

Multivariate Normal Density

Density function (also symbolized by N(µ,Σ)) :

p(x) = 1

(2π)D/2|Σ|1/2
e
1
2 (x−µ)T Σ−1(x−µ)

Expected value: µ ≡ E [x] =
∫

∞

−∞
xp(x)dx

Covariance matrix:

Σ≡ E [(x−µ)(x−µ)T ] =
∫

∞

−∞
(x−µ)(x−µ)Tp(x)dx
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Discriminant Functions for the Normal Density

Introduction

According to previous sections the use of MAP criterion yields the

following discriminant functions

gi (x) = lnp(x|ωi ) + lnP(ωi )

For the case of multivariate normal densities for the likelihood, i.e. when

p(x|ωi ) = N(µ,Σ), it follows that

gi (x) =−(1/2)(x−µi )
TΣ−1i (x−µi )− (d/2) ln2π− (1/2) ln |Σi |+ lnP(ωi )

Next, we examine three di�erent Covariance Matrix models
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Discriminant Functions for the Normal Density

Identical Diagonal Covariance Matrices with Σi = σ2
I

We assume that features are statistically independent and have equal

standard deviations

The discriminant function can be simpli�ed as

gi (x) =−(x−µi )
T (x−µi )

2σ2
+ lnP(ωi )⇔

gi (x) =− 1

2σ2
[xTx−2µ

T
i x+ µ

T
i µi ] + lnP(ωi )

Further simpli�cation �by discarding category-invariant terms � yields

a linear discriminant function

gi (x) =w
T
i x+bi0

where

wi = (1/σ
2)µi ,bi0 =−(1/2σ

2)µ
T
i µi + lnP(ωi )
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Discriminant Functions for the Normal Density

Identical Diagonal Covariance Matrices with Σi = σ2
I

A classi�er de�ned by linear discriminant functions is called a linear

machine.

The decision surfaces de�ned by gi (x)−gj(x) are hyperplanes in the

feature space

Here the decision surface is described by the equation

w
T (x−x0) = 0

with

w = µi −µj

x0 = (1/2)(µi + µj)−
σ2

‖µi −µj‖2
ln
P(ωi )

P(ωj)
(µi −µj)

‖µi −µj‖2 = (µi −µj)
T (µi −µj)

Therefore, the decision surface is a hyperplane passing through x0 and

orthogonal to the line linking the category means (x−x0)
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Discriminant Functions for the Normal Density

Identical Diagonal Covariance Matrices with Σi = σ2
I

Additional notes

If all priors P(ωi ) are equal, then the discriminant function can be

simpli�ed to

gi (x) = ‖x−µi‖

Hence, each pattern will be classi�ed to the category with the closest

mean using a Euclidean norm

This is called a minimum-distance classi�er
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Discriminant Functions for the Normal Density

Identical Arbitrary Covariance Matrices with Σi = Σ

The discriminant function can be simpli�ed by discarding

category-invariant terms

gi (x) =−(1/2)(x−µi )
TΣ−1(x−µi ) + lnP(ωi )

Let the prior probabilities P(ωi ) be equal for all classes. Then

gi (x) =−(1/2)(x−µi )
TΣ−1(x−µi )

After expansion of Mahalanobis distance and simpli�cation

gi (x) =w
T
i x+bi0

where

wi = Σ−1µi ,bi0 =−(1/2)µ
T
i Σ−1µi + lnP(ωi )
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Discriminant Functions for the Normal Density

Identical Arbitrary Covariance Matrices with Σi = Σ

The decision surfaces de�ned by gi (x)−gj(x) are hyperplanes in the

feature space

Here the decision surface is described by the equation

w
T (x−x0) = 0

with

w = Σ−1(µi −µj)

x0 = (1/2)(µi + µj)−
ln P(ωi )

P(ωj )

(µi −µj)
TΣ−1(µi −µj)

(µi −µj)

Therefore, the decision surface is a hyperplane passing through x0 but

it is not necessarily orthogonal to the line linking the category means

(x−x0)

S. Makrogiannis (DSU) Bayesian Decision Theory October 6, 2015 15 / 25



Discriminant Functions for the Normal Density

Identical Arbitrary Covariance Matrices with Σi = Σ
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Discriminant Functions for the Normal Density

Arbitrary Covariance Matrices

In this case the covariance matrices are di�erent for each category

The discriminant function takes the form

gi (x) = x
T
Wix+wT

i x+bi0

where

Wi =−(1/2)Σ−1i

wi = Σ−1i µi

bi0 =−(1/2)µ
T
i Σ−1µi − (1/2) ln |Σi |+ lnP(ωi )

This is a quadratic form

In the two-category case the decision surfaces are hyperquadrics

assuming any of the following forms: hyperplanes, hyperspheres,

hyperellipsoids, hyperparaboloids, or hyperhyperboloids
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Discriminant Functions for the Normal Density

Arbitrary Covariance Matrices
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Error Probabilities and Integrals

Bayes Error Rate
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Receiver Operating Characteristics

Problem De�nition

Suppose that we want to detect a signal. We measure a feature x
-let's say voltage- that has a mean µ1 when a signal is present, and µ2

when there is no signal

We assume two normal distributions with di�erent means but the

same variance, that is N(µ1,σ) and N(µ2,σ) for classes ω1 and ω2

respectively

For the detection we use a threshold value x∗ �that is unknown to us�

to classify a feature x into signal or no-signal categories

We seek a measure of separability, i.e., how easy it is to separate the

two categories and make a prediction

Suppose we do not know µ1,µ2,σ ,x∗, but we know the sate of nature

and the system's decision for each
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Receiver Operating Characteristics

Probabilities

P(x > x ∗ |x ∈ ω2): hit, we detect a signal and the signal is present

P(x > x ∗ |x ∈ ω1): false alarm, we detect a signal but no signal is present

P(x < x ∗ |x ∈ω2): miss, we do not detect a signal but the signal is present

P(x < x ∗ |x ∈ ω1): correct rejection, we do not detect a signal and no

signal is present

If we have enough samples we can compute the probabilities experimentally

If x∗ changes, then the above probabilities will change
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Receiver Operating Characteristics

Receiver Operating Characteristics (ROC)

An ROC graph is a plot of probability of hit vs. probability of false

alarm for di�erent values of x∗
The curve can be used to measure separability, that is the capacity of

our system to detect the signal

A usual measure of separability is the area under the curve, frequently

denoted by AUC −ROC

In this context it is important to choose a measure x whose variations

will signi�cantly change the probability values
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Receiver Operating Characteristics

ROC Example

ROC curve for varying discriminability
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Receiver Operating Characteristics

ROC Example 2

ROC curves are not necessarily symmetric
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Bayesian Decision Theory for Discrete Features

Bayesian Decision Theory for Discrete Features

Here we assume that the components of feature vector x can assume

only m discrete values v1,v2, ...,vm
The Bayes formula involves probabilities only

P(ωj |x) =
P(x|ωj)P(ωj)

P(x)

with

P(x) =
c

∑
i=1

P(x|ωi )P(ωi )

Integrals are replaced by sums in de�nitions of expectation, variance,

entropy and other statistical measures

Fundamental Bayes decision rule is the same To minimize the overall

risk, select the action αi for which the conditional risk R(αi |x) is

minimized

α∗= argmin
i

R(αi |x)
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1 Bayesian Parameter Estimation for the Gaus-

sian Density

1.1 Univariate Normal Density

Find the class-conditional density p(x|D) using Bayesian estimation assuming
that p(x|µ) ∼ N(µ, σ2), p(µ) ∼ N(µ0, σ0) and σ is known.
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• Estimate p(µ|D) using Bayes rule

• Estimate p(x|D) by integration over the parameter space

Find the class-conditional density p(x|D) using Bayesian estimation as-
suming that p(x|µ) ∼ N(µ, σ2), p(µ) ∼ N(µ0, σ0) and σ is known.

1.2 Estimate p(µ|D)

• According to previous analysis, we seek to estimate p(x|D) for each
class

• This is achieved by integration over the parameter space

p(x|D) =

∫
p(x, θ|D)dθ

• From definition of joint probability: p(x|D) =
∫
p(x|θ,D)p(θ|D)dθ

• We use Bayes rule to estimate p(θ|D): p(θ|D) = p(D|θ)P (θ)∫
p(D|θ)P (θ)dθ

• If the samples are independently drawn, then: p(D|θ) =
∏n

i=1 p(xi|θ)

• We use Bayes rule to estimate posterior parameter density p(µ|D):

p(µ|D) =
p(D|µ)p(µ)∫
p(D|µ)p(µ)dµ

• Let samplesD = {x1,x2, ...,xn} be independently drawn. Then: p(D|µ) =∏n
i=1 p(xi|µ)

• Then: p(µ|D) = α ·
∏n

i=1 p(xi|µ)p(µ)

• According to assumptions:

p(xi|µ) =
1√
2πσ

e−
(xi−µ)

2

2σ2 , p(µ) =
1√

2πσ0
e
− (µ−µ0)

2

2σ20

• So: p(µ|D) = α ·
∏n

i=1

[
1√
2πσ

e−
(xi−µ)

2

2σ2
1√
2πσ0

e
− (µ−µ0)

2

2σ20

]
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• After some more manipulations we can show that p(µ|D) is an exponen-
tial function of a quadratic function, hence it has the form N(µn, σn)

• Therefore

p(µ|D) =
1√

2πσn
e
− (µ−µn)2

2σ2n

where,

µn =

(
nσ2

0

nσ2
0 + σ2

)
µ̂n +

σ2

nσ2
0 + σ2

µ0, σ2
n =

σ2
0σ

2

nσ2
0 + σ2

µ̂n = (1/n)
n∑
i=1

xi

• σn decreases as n→∞ with limn→∞ σ
2
n = σ2

n

• We observe that as the number of training samples increases, p(µ|D)
becomes sharper around µn. This process is called Bayesian learning

• If σ0 6= 0, then µn approaches the sample mean limn→∞ µn = µ̂n.

1.3 Estimate p(x|D)

• According to Bayesian estimation process

p(x|D) =

∫
p(x|µ,D)p(µ|D)dµ⇔

p(x|D) =

∫
1√
2πσ

e−
(x−µ)2

2σ2
1√

2πσn
e
− (µ−µn)2

2σ2n dµ⇔
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p(x|D) =
1

2πσσn
f(σ, σn)e

− (x−µn)2

2(σ2+σ2n)

where f(σ, σn) has an integral form:

f(σ, σn) =

∫
exp

[
(−1/2)

σ2 + σ2
n

σ2σ2
n

(
µ− σ2

nx+ σ2µn
σ2 + σ2

n

)2
]
dµ

• Observe that p(x|D) ∼ N(µn, σ
2 + σ2

n)

• The above result gives the class-conditional density p(x|ωi,Di) based on
the posterior parameter mean estimate µn and the posterior parameter
variance estimate increased by the uncertainty in x that we assume to
be known
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Exercise 1. Consider Bayesian estimation of the mean of a one-dimensional
Gaussian. Suppose you are given the prior for the mean is p(µ) ∼ N(µ0, σ0).

1. Write a program that plots the density p(x|D) given, µ0, σ0, σ and train-
ing set D = {x1, x2, . . . , xn}.

2. Estimate σ for the x2 component of ω3 in Table 1 and in file ch3 dhs samples.dat.
Now assume µ0 = −1 and plot your estimated densities p(x|D) for each
of the following values of the dogmatism σ2/σ2

0 : 0.1, 1, 10, 100.

3. Repeat above process but this time generate a dense sample set with the
same mean and standard deviation as in the real dataset.

Table 1: Three-dimensional data sampled from three categories.

function x_density_given_d = ch3_bayesian_estimation_1d(X, sigma,

mu_0, sigma_0)

% Bayesian parameter estimation for a univariate normal

distribution.

% S. Makrogiannis, Delaware State Univ, 10/2015.

% Initial parameters and calculations.

X = sort(X);

n = numel(X);

hat_mu_n = sum(X) / n;
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normal_density = @(x, mu, sigma) ( (1/(sqrt(2*pi)*sigma)) * exp(

(-0.5) * ( (x - mu) / sigma )^2 ) );

% For a range of values of our random variable x:

for i=1:n

x_density_given_d(i) = 0;

for mu = mu_0-4*sigma_0:mu_0+4*sigma_0

% Estimate p(mu|D) using Bayesian technique.

[mu_density_given_d(i), mu_n, sigma_n] = ...

bayesian_parameter_density(mu, sigma, mu_0, sigma_0,

hat_mu_n, n);

% Compute p(x|mu)

x_density_given_mu(i) = normal_density(X(i), mu, sigma);

% Compute p(x|mu) * p(mu|D)

% Add up to approximate integral.

x_density_given_d(i) = x_density_given_d(i) +

(x_density_given_mu(i) * mu_density_given_d(i));

end

end

figure, plot(X, x_density_given_d); title(’p(X|D)’)

end

%-------------------------------------------------------------------------%

function [mu_density, mu_n, sigma_n] = ...

bayesian_parameter_density(mu, sigma, mu_0, sigma_0, hat_mu_n,

n)

% Compute mu_n and sigma_n

normal_density = @(x, mu, sigma) ( (1/(sqrt(2*pi)*sigma)) * exp(

(-0.5) * ( (x - mu) / sigma )^2 ) );
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mu_n = ( n * sigma_0^2 / ( n * sigma_0^2 + sigma^2 ) ) * hat_mu_n

+ ...

( sigma^2 / ( n * sigma_0^2 + sigma^2 ) ) * mu_0;

var_n = (sigma_0^2 * sigma^2) / (( n * sigma_0^2 + sigma^2 ));

sigma_n = sqrt(var_n);

mu_density = normal_density(mu, mu_n, sigma_n);

end

% Bayesian estimation for 1-D Gaussian distributions.

% Load data.

A = load(’ch3_dhs_samples.dat’);

% Initialize parameters and compute sigma.

dogmatism = [0.1, 1, 10, 100];

n_runs = numel(dogmatism);

sigma = std(A(:,8));

mu_0 = -1;

% Perform density estimation.

for i=1:n_runs

sigma_0 = sqrt(sigma^2/dogmatism(i));

x_density_given_d = ch3_bayesian_estimation_1d(A(:,8), sigma,

mu_0, sigma_0);

end

2 Fisher Linear Discriminant

2.1 Discriminant Analysis

• PCA finds optimal data representations in the least square sense, how-
ever this does not imply that the transformed features will produce
increased class separability
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Figure 1: Bayesian parameter estimation example.
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Figure 2: Bayesian parameter estimation example over a densely sampled
space.
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• On the other hand discriminant analysis techniques look for directions
that distinguish between classes

2.2 Problem Definition

• Let’s consider the problem of projecting data from d dimensions onto
a line

• Let x1, . . . ,xn be the set of n points in a d dimensional space divided
into subsets Di belonging to categories ωi with cardinalities ni, where
i = 1, 2.

• Then the projections on to the direction determined by w with |w| = 1
are

y = wTx

• The projections produce a set of n samples yi with i = 1, . . . , n divided
into subsets Y1 and Y2

• Our problem is to find the direction of w that will maximize the sepa-
ration between the projected points in Y1 and Y2

2.3 Class Separability

2.4 Criterion Function

• Fisher Linear Discriminant seeks maximization of J(w) defined as

J(w) =
|my1 −my2|2

s2y1 + s2y2

where

myi is the sample mean of ωi in the projected space:

myi = (1/ni)
∑
y∈Yi

y = (1/ni)
∑
x∈Di

wTx = wT (1/ni)
∑
x∈Di

x = wTmxi

s2yi is the scatter for projected samples of ωi:

s2yi =
∑
y∈Yi

(y −myi)
2
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Figure 3: Projection of data onto different directions defined by w. Observe
that projection displayed in the right figure produces greater separability
than the projection displayed in the left figure

2.5 Scatter Matrices

Further we define

• Scatter matrices: Si =
∑

x∈Di(x−mxi)(x−mxi)
T , i = 1, 2

• Within-class scatter matrix: SW = S1 + S2

• Because

s2yi =
∑
y∈Yi

(y −myi)
2 =

∑
y∈Yi

(wTx−wTmxi)
2

= wT
∑
y∈Yi

[
(x−mxi)(x−mxi)

T
]
w = wTSiw,

s2y1 + s2y2 = wTSWw

• Consider the numerator of J(w):

|my1 −my2|2 = (my1 −my2)
2 = (wTmx1 −wTmx2)

2

= wT (mx1 −mx2)
2

= wT (mx1 −mx2)(mx1 −mx2)Tw

= wTSBw,
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where SB is the between-class scatter matrix

SB = (mx1 −mx2)(mx1 −mx2)T

• Proportional to the sample covariance matrix

• Symmetric and positive-semidefinite

• Nonsingular if n > d

• Outer product of two vectors

• Symmetric and positive-semidefinite

• Its rank is at most 1

2.6 Optimizing the Criterion Function

• We use the scatter matrix definitions it follow that the criterion function
is:

J(w) =
wTSBw

wTSWw

• This is a Rayleigh quotient

• The w that maximizes J(w) must satisfy SBw = λSWw (generalized
eigenvalue problem)

• If SW is nonsingular, we have the conventional eigenvalue problem

S−1W SBw = λw

• We do not need to solve

S−1W SBw = λw

• Recall that SBw is at the direction of m1 −m2

• Hence the solution is:

w = S−1W (m1 −m2)

• After the projection, we make a decision in the unidimensional space

12



2.7 Classification Rule

• Assuming multivariate normal class-conditional densities p(x|ωi) with
equal covariance matrices Σ, we recall from Ch. 2 that at the decision
boundary

wTx+ w0 = 0,

where
w = Σ−1(µ1 − µ2)

• When we use the sample means and sample covariance matrix it follows
that w is the one that maximizes the Fisher linear discriminant

• In this case, to classify we apply a threshold to Fisher’s linear discrim-
inant
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Exercise 2. Consider the Fisher linear discriminant method

1. Write a general program to calculate the optimal direction w for a
Fisher linear discriminant based on three-dimensional data.

2. Find the optimal w for categories ω2 and ω3 in Table 1.

3. Plot a line representing your optimal direction w and mark on it the
positions of the projected points.

4. In this subspace, fit each distribution with a univariate Gaussian, and
find the resulting decision boundary.

5. What is the training error (the error on training points themselves) in
the optimal subspace you found in part (2)?

6. For comparison, repeat parts (4) and (5) using instead the nonopti-
mal direction w = (1.0, 2.0,−1.5)T . What is the training error in this
nonoptimal subspace?

function [Y_class, w, X_class] = ch3_fisher_linear_discriminant(X,

total_classes, class_numbers)

% Compute discriminant and project data to it.

% S. Makrogiannis, Delaware State Univ, 10/2015.

% Get number of classes

c = total_classes;

[n, c_times_d] = size(X);

d = c_times_d / c;

class_numbers_length = numel(class_numbers);

% Compute Sw and its inverse.

Sw = zeros(d, d);

X_class = cell(c, 1);

for i=class_numbers(1):class_numbers(class_numbers_length)

% Compute scatter matrix for each class.

first_column = d*(i-1)+1;

last_column = d*i;

X_class{i} = X(:, first_column:last_column)’;

mean_vector(:, i) = mean(X_class{i}, 2);

M = repmat(mean_vector(:, i), 1, n);
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S{i} = (X_class{i} - M) * (X_class{i} - M)’;

% Add scatter matrices.

Sw = Sw + S{i};

end

% Compute vector w

Sw_Inv = inv(Sw);

w = Sw_Inv * ...

( mean_vector( :, class_numbers(1) ) - ...

mean_vector( :, class_numbers(class_numbers_length) ) );

% Project data to w.

for i=class_numbers(1):class_numbers(class_numbers_length)

Y_class{i} = w’ * X_class{i};

end

end

% Fisher linear discriminant.

% Load data.

A = load(’ch3_dhs_samples.dat’);

c = 3;

[n, c_times_d] = size(A);

d = c_times_d / c;

% Find optimal w for categories omega1 and omega2.

class_numbers = [2, 3];

[Y_class, w, X_class] = ch3_fisher_linear_discriminant(A, 3,

class_numbers);

% Plot a line representing w and the positions of the plotted

points.

figure, plot3(X_class{2}(1,:), X_class{2}(2,:), X_class{2}(3,:),

’bo’, ’linewidth’, 4); hold on;

plot3(X_class{3}(1,:), X_class{3}(2,:), X_class{3}(3,:), ’gx’,

’linewidth’, 4);

% plot3([0, w(1)], [0, w(2)], [0, w(3)], ’k-’, ’linewidth’, 4);

grid on;
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title(’Points and discriminant vector’, ’fontsize’, 18);

saveas(gcf, ’Fisher_Linear_Discriminant_Lab.png’)

Projection_Vector = cell(3, 1);

for i=1:n

Projection_Vector{2}(1:c,i) = Y_class{2}(i) * w(1);

Projection_Vector{3}(1:c,i) = Y_class{3}(i) * w(1);

end

figure, plot3(Projection_Vector{2}(1,:),

Projection_Vector{2}(2,:), Projection_Vector{2}(3,:), ...

’bo’, ’linewidth’, 4); hold on;

plot3(Projection_Vector{3}(1,:), Projection_Vector{3}(2,:),

Projection_Vector{3}(3,:), ...

’gx’, ’linewidth’, 4);

% plot3([0, w(1)], [0, w(2)], [0, w(3)], ’k-’, ’linewidth’, 4);

grid on;

title(’Projection onto line’, ’fontsize’, 18);

saveas(gcf, ’Fisher_Linear_Discriminant_Lab_02.png’)

figure, plot(Y_class{2}, ones(n, 1),’bo’); hold on;

plot(Y_class{3}, ones(n, 1), ’gx’, ’linewidth’, 4); grid on;

title(’Points in 1-d space’, ’fontsize’, 18);

saveas(gcf, ’Fisher_Linear_Discriminant_Lab_03.png’)

% Fit each distribution with a univariate Gaussian.

mu_2 = mean(Y_class{2});

sigma_2 = std(Y_class{2});

mu_3 = mean(Y_class{3});

sigma_3 = std(Y_class{3});

% Find decision boundary.

y_0 = 0.06;

% Calculate training error.

Y_Data = [Y_class{2}, Y_class{3}];

L_Data = [2* ones(1,n),3* ones(1,n)];

Decision = Y_Data < y_0;
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Decision = Decision + 2;

classification_rate = 100 * (sum( Decision == L_Data) /

numel(L_Data));

fprintf(’Overall classification rate = %f\n’, classification_rate);

% Repeat above process for w = [1, 2, -1.5]’ and compute the

training

% error.
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Figure 4: Fisher linear discriminant example.
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Parameter Estimation

Challenges

According to Bayesian Decision Theory we can build a classi�er when
the prior probability P(ω) and likelihood p(x|ωi ) are known

In the real-world these probabilities and densities are unknown and
must be estimated from data

In speci�c, the estimation of likelihood (density) may be challenging
especially, when the number of samples is limited and the
dimensionality is high

There are two main approaches to this density estimation: parametric
and nonparametric
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Parameter Estimation

Solutions for Density Estimation

Parameter Estimation

We assume a model for the density function, for example, Gaussian,
Rician, etc, and we need to estimate the parameters of the function,
for example, mean and variance.

Main techniques for parameter estimation

Maximum Likelihood

Bayesian Estimation

Nonparametric Estimation

We make no assumptions about the form of the density

Main techniques for nonparametric estimation

Parzen Kernels

Nearest Neighbor Rule
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Parameter Estimation

The Parameter Estimation Problem

Assumptions

A set of n training samples/patterns D = {x1,x2, ...,xn}
Samples are drawn from a distribution p(x|ωi ) with a known
parametric form, e.g. p(x|ωi )∼ N(µi,Σi )

The parameters are collectively represented by θ , θ = (µi ,Σi )

Therefore, density can be written as p(x|θ)

Objective

Given a set of n training samples/patterns D , estimate θ
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Parameter Estimation

Maximum Likelihood vs Bayesian Estimation

Maximum Likelihood (ML) Estimation

Parameters θ are assumed to be �xed

The solution is found as set that yields the best �tting model

θ̂ = argmaxp(D |θ)

Bayesian Estimation

Parameters θ are considered to be random variables with known prior
distribution

Given the observations D we estimate the posterior p(θ |D)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

As explained before, we seek to
estimate p(x|ωi ,θ)

To achieve this we look for the
parameters θ̂ that best describe
the n samples
D = {x1,x2, ...,xn}
This is equivalent to �nding the
value θ̂ , such that
θ̂ = argmaxp(D |θ)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Assuming that samples in D are drawn independently,

p(D |θ) =
n

∏
k=1

p(xk|θ)

If f (θ) = p(D |θ) is a di�erentiable function, we can use di�erential
calculus to �nd the maximizer from

∇θ f (θ) = 0

Let θ = (θ1,θ2, ...,θp). Then ∇θ = [ ∂

∂θ1

∂

∂θ2
... ∂

∂θp
]T
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

For analytical tractability reasons let us optimize the logarithm of f .
Then

θ̂ = argmaxln f (θ) = argmaxln
n

∏
k=1

p(xk|θ) = argmax
n

∑
k=1

lnp(xk|θ)

According to previous treatment we obtain solution from a set of p
equations

∇θ

n

∑
k=1

lnp(xk|θ) = 0

S. Makrogiannis (DSU) Parameter Estimation September 22, 2015 9 / 14



Maximum Likelihood Estimation

Case 1: Gaussian with unknown µ

Problem statement

We assume a multivariate normal population with unknown mean µ

and known covariance matrix Σ

We seek to estimate µ

Log likelihood for each sample:

lnpk(xk|µ) = (−1/2) ln
[
(2π)d |Σ|

]
− (1/2)(xk −µ)TΣ−1(xk −µ)

To optimize we solve:

n

∑
k=1

∇µ lnpk(xk |µ̂) = 0⇔
n

∑
k=1

Σ−1(xk − µ̂) = 0

Hence:

µ̂ = (1/n)
n

∑
k=1

xk
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Maximum Likelihood Estimation

Case 2: Gaussian with unknown µ and unknown σ

Problem statement

We assume a univariate normal population with unknown mean µ and
unknown covariance matrix σ

We seek to estimate θ = (µ,σ)

Log likelihood for each sample:
lnpk(xk |θ) = (−1/2) ln

(
2πσ2

)
− (1/2σ2)(xk −µ)2

Derivative is ∇θ lnpk(xk |θ) =
[
(1/σ2)(xk −µ), −1

2σ2 + (xk−µ)2

2σ4

]T
We solve: ∑

n
k=1(1/σ̂2)(xk − µ̂) = 0 and ∑

n
k=1

[
−1
2σ̂2 + (xk−µ̂)2

2σ̂4

]
= 0

After some rearranging we get:
µ̂ = (1/n)∑

n
k=1 xk , σ̂2 = (1/n)∑

n
k=1(xk − µ̂)2
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Maximum Likelihood Estimation

Case 3: Gaussian with unknown µ and unknown Σ

Problem statement

We assume a multivariate normal population with unknown mean µ

and unknown covariance matrix Σ

We seek to estimate θ = (µ,Σ)

Log likelihood for each sample:

lnpk(xk|µ) = (−1/2) ln
[
(2π)d |Σ|

]
− (1/2)(xk −µ)TΣ−1(xk −µ)

Next, we have to solve a system similar to Case 2:

∑
n
k=1∇θ lnp(xk |θ) = 0

The maximum-likelihood solution is:
µ̂ = (1/n)∑

n
k=1 xk, Σ̂ = (1/n)∑

n
k=1(xk− µ̂)(xk− µ̂)T
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Bias

Bias of Maximum-Likelihood Estimation Technique

Maximum likelihood estimates for a Gaussian with unknown µ and
unknown Σ:

µ̂ = (1/n)
n

∑
k=1

xk, Σ̂ = (1/n)
n

∑
k=1

(xk− µ̂)(xk− µ̂)T

Sample mean and sample covariance matrix:

µ = (1/n)
n

∑
k=1

xk, C =
1

n−1

n

∑
k=1

(xk− µ̂)(xk− µ̂)T

Hence µ̂ = µ , Σ̂ = n−1
n C

Therefore µ̂ is an unbiased estimate of the mean, but Σ̂ is biased

Σ̂→ C when n→ ∞, therefore Σ̂ is called asymptotically unbiased
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Bias

Further Comments on Maximum-Likelihood Estimation

Maximum likelihood estimation is usually simpler than other
estimation methods

The estimates become more accurate as the number of samples
increases

If the likelihood model p(x |θ) is accurate, it yields very good results

Model selection is a key process that is studied by the �eld of
Algorithm-Independent Machine Learning
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Bayesian Parameter Estimation

Bayesian Estimation

We consider the parameter vector θ to be a random variable with prior

p(θ)

We use training data D to estimate the posterior probability density

p(θ |D)

Finally we integrate over the parameter space to estimate the

class-conditional density p(x|ωi ,D)
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Bayesian Parameter Estimation

Class-conditional Densities

In Bayesian classi�cation we face the problem of making a decision

using posterior probabilities P(ωi |x)

We need to know the likelihood p(x|ωi ) and priors P(ωi ) to calculate

the posteriors

We have seen that the estimation of class-conditional density (or

likelihood) is non-trivial in real-world applications

To solve this problem we �rst assume a parametric functional form for

the likelihood and then use training samples to estimate the likelihood

for each class

S. Makrogiannis (DSU) Parameter Estimation September 29, 2015 4 / 23



Bayesian Parameter Estimation

Class-conditional Densities

Given a training sample set D = {x1,x2, ...,xn}, the Bayesian rule

becomes

P(ωi |x,D) =
p(x|ωi ,D)P(ωi |D)

∑
c
j=1 p(x|ωj ,D)P(ωj |D)

If we assume that the class-conditionals of di�erent classes are

statistically independent it follows that

P(ωi |x,Di ) =
p(x|ωi ,Di )P(ωi )

∑
c
j=1 p(x|ωj ,Di )P(ωj)

Now we need to solve c likelihood estimation problems
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Bayesian Parameter Estimation

Bayesian Estimation Steps

According to previous analysis, we seek to estimate p(x|D) for each

class

This is achieved by integration over the parameter space

p(x|D) =
∫

p(x,θ |D)dθ

Using de�nition of joint probability:

p(x|D) =
∫

p(x|θ ,D)p(θ |D)dθ

Bayes rule to estimate p(θ |D): p(θ |D) = p(D |θ)P(θ)∫
p(D |θ)P(θ)dθ

If samples are independently drawn, then:

p(D |θ) =
n

∏
i=1

p(xi |θ)
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Bayesian Parameter Estimation for the Gaussian Density

Univariate Normal Density

Problem

Find the class-conditional density p(x |D) using Bayesian estimation

assuming that p(x |µ)∼ N(µ,σ2), p(µ)∼ N(µ0,σ0) and σ is known.

Solution steps

Estimate p(µ|D) using Bayes rule

Estimate p(x |D) by integration over the parameter space
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Bayesian Parameter Estimation for the Gaussian Density

Univariate Normal Density

Problem

Find the class-conditional density p(x |D) using Bayesian estimation

assuming that p(x |µ)∼ N(µ,σ2), p(µ)∼ N(µ0,σ0) and σ is known.

Estimate p(µ|D)

According to previous analysis, we seek to estimate p(x|D) for each

class

This is achieved by integration over the parameter space

p(x|D) =
∫

p(x,θ |D)dθ

From de�nition of joint probability: p(x|D) =
∫
p(x|θ ,D)p(θ |D)dθ

We use Bayes rule to estimate p(θ |D): p(θ |D) = p(D |θ)P(θ)∫
p(D |θ)P(θ)dθ

If the samples are independently drawn, then: p(D |θ) = ∏
n
i=1 p(xi |θ)
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Bayesian Parameter Estimation for the Gaussian Density

Estimate p(µ|D)

We use Bayes rule to estimate posterior parameter density p(µ|D):

p(µ|D) =
p(D |µ)p(µ)∫
p(D |µ)p(µ)dµ

Let samples D = {x1,x2, ...,xn} be independently drawn. Then:

p(D |µ) = ∏
n
i=1 p(xi |µ)

Then: p(µ|D) = α ·∏n
i=1 p(xi |µ)p(µ)

According to assumptions:

p(xi |µ) =
1√
2πσ

e−
(xi−µ)2

2σ2 , p(µ) =
1√
2πσ0

e
− (µ−µ0)2

2σ20

So: p(µ|D) = α ·∏n
i=1

[
1√
2πσ

e−
(xi−µ)2

2σ2
1√
2πσ0

e
− (µ−µ0)2

2σ20

]
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Bayesian Parameter Estimation for the Gaussian Density

Estimate p(µ|D)

After some more manipulations we can show that p(µ|D) is an

exponential function of a quadratic function, hence it has the form

N(µn,σn)

Therefore

p(µ|D) =
1√
2πσn

e
− (µ−µn)2

2σ2n

where,

µn =

(
nσ2

0

nσ2
0 + σ2

)
µ̂n +

σ2

nσ2
0 + σ2

µ0, σ
2
n =

σ2
0σ2

nσ2
0 + σ2

µ̂n = (1/n)
n

∑
i=1

xi
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Bayesian Parameter Estimation for the Gaussian Density

Estimate p(µ|D)

Bayesian learning

σn decreases as n→ ∞ with limn→∞ σ2
n = σ2

n

We observe that as the number of training samples increases, p(µ|D)
becomes sharper around µn. This process is called Bayesian learning

If σ0 6= 0, then µn approaches the sample mean limn→∞ µn = µ̂n.
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Bayesian Parameter Estimation for the Gaussian Density

Estimate p(x |D)

According to Bayesian estimation process

p(x |D) =
∫

p(x |µ,D)p(µ|D)dµ ⇔

p(x |D) =
∫

1√
2πσ

e−
(x−µ)2

2σ2
1√
2πσn

e
− (µ−µn)2

2σ2n dµ ⇔

p(x |D) =
1

2πσσn
f (σ ,σn)e

− (x−µn)2

2(σ2+σ2n )

where f (σ ,σn) has an integral form:

f (σ ,σn) =
∫
exp

[
(−1/2)

σ2 + σ2
n

σ2σ2
n

(
µ− σ2

n x + σ2µn

σ2 + σ2
n

)2
]
dµ
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Bayesian Parameter Estimation for the Gaussian Density

Estimate p(x |D)

Observe that p(x |D)∼ N(µn,σ
2 + σ2

n )

The above result gives the class-conditional density p(x |ωi ,Di ) based

on the posterior parameter mean estimate µn and the posterior

parameter variance estimate increased by the uncertainty in x that we

assume to be known
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Bayesian Parameter Estimation for the Gaussian Density

Multivariate Normal Density

Problem

Find the class-conditional density p(x|D) using Bayesian estimation

assuming that p(x|µ)∼ N(µ,Σ), p(µ)∼ N(µ0,Σ0), and that Σ, µ0, Σ0

are known.

Solution steps

Estimate p(µ|D) using Bayes rule

Estimate p(x|D) by integration over the parameter space
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Bayesian Parameter Estimation for the Gaussian Density

Estimate p(µ|D)

Similarly to the unidimensional case we use the Bayes rule to estimate

the posterior parametric density, and the assumption for idependent

samples xi ∈D with |D |= n

p(µ|D) = α

n

∏
i=1

p(xi |D)p(µ)⇔

p(µ|D) = α
′′e(−1/2)(µ−µn)T Σ−1n (µ−µn)

Hence: p(µ|D)∼ N(µn,Σn)

By equating coe�cients we get:

Σ−1n = nΣ−1 + Σ−10 , Σ−1n µn = nΣ−1µ̂n + Σ−10 µ0

where µ̂n = (1/n)∑
n
k=1 xk

S. Makrogiannis (DSU) Parameter Estimation September 29, 2015 15 / 23



Bayesian Parameter Estimation for the Gaussian Density

Estimate p(µ|D)

Finally after some manipulations it follows that

µn = Σ0[Σ0 + (1/n)Σ]−1µ̂n + (1/n)Σ[Σ0 + (1/n)Σ]−1µ0

Σn = Σ0[Σ0 + (1/n)Σ]−1(1/n)Σ

µ̂n = (1/n)
n

∑
i=1

xi
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Bayesian Parameter Estimation for the Gaussian Density

Estimate p(x|D)

To estimate the class-conditional density we must compute the

integral:

p(x|D) =
∫

p(x|µ)p(µ|D)dµ

Finally, we can show that p(x|D)∼ N(µn,Σ + Σn), either
(a) by performing integration, or

(b) by using the central limit theorem and the observation that x can

be considered to be the sum of random variables µ with

p(µ|D)∼ N(µn,Σn) and y with p(y)∼ N(0,Σ)
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Bayesian Parameter Estimation for Arbitrary Density Models

Bayesian Parameter Estimation for Arbitrary Density Models

We can generalize the Bayesian technique to arbitrary density models

p(x|D) with parameters θ

Main assumptions

The form of p(x|θ) is known but the parameter vector θ is unknown

We know prior density p(θ)

We can learn more about θ from a set D of statistically independent

n samples xk , for k = 1, ...,n , following the unknown p(x)
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Bayesian Parameter Estimation for Arbitrary Density Models

Bayesian Parameter Estimation for Arbitrary Density Models

How to compute the class-conditional

Using de�nition of joint probability: p(x|D) =
∫
p(x|θ ,D)p(θ |D)dθ

Bayes rule to estimate p(θ |D): p(θ |D) = p(D |θ)P(θ)∫
p(D |θ)P(θ)dθ

If samples are independently drawn, then: p(D |θ) = ∏
n
i=1 p(xi |θ)

Comments

If p(D |θ) reaches a sharp peak at θ = θ̂ and p(θ) is not zero at

θ = θ̂ , then p(θ |D) also peaks at θ = θ̂

Then p(x|D)' p(x|θ̂), hence the ML and Bayesian estimates will be

close

Still, Bayesian estimation uses more information for the

class-conditional density estimate than the ML technique
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Bayesian Parameter Estimation for Arbitrary Density Models

Recursive Bayes Incremental Learning

Suppose that we are given a set of training samples

Dn = {x1,x2, ...,xn}, where n > 1

Then p(Dn|θ) = p(xn|θ)p(Dn−1|θ)

Using the Bayes rule:

p(θ |Dn) = p(xn|θ)p(Dn−1|θ)P(θ)∫
p(xn|θ)p(Dn−1|θ)P(θ)dθ

= p(xn|θ)p(θ |Dn−1)∫
p(xn|θ)p(θ |Dn−1)dθ

Starting from p(θ |D0) = p(θ) we can recursively compute

p(θ |x1),p(θ |x1,x2), ...,p(θ |x1, ...,xn)

This is an on-line learning method that updates the model as more

training data are collected and is called recursive Bayes approach to

parameter estimation

When the computation converges to a Dirac delta function centered at

the true parameter value, we have achieved Bayesian Learning
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Bayesian Parameter Estimation for Arbitrary Density Models

Identi�ability in Recursive Bayes Incremental Learning

For most typical density models p(x|θ), the sequence of posterior

densities converges to a delta function, and a true value for θ can be

found. Then p(x|θ) is called identi�able

However, in some cases there are multiple values of θ that explain the

data. Fortunately, the integration operation for estimating p(x|Dn)
will still converge to p(x) because all optimizing values of θ will yield

the same p(x|θ)

Non-identi�ability may become an issue in unsupervised learning

techniques
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Bayesian Parameter Estimation for Arbitrary Density Models

Comparing Maximum-Likelihood and Bayesian Parameter

Estimation

ML methods are computationally simpler than Bayesian estimation

techniques because they employ di�erential calculus or gradient search

techniques to �nd θ̂ . On the other hand, Bayesian estimation involves

complex multidimensional integration

ML solutions correspond to single optimal models, hence they are

easier to interpret and understand than Bayesian solutions that are

produced by weighted sums of models

Bayesian estimation techniques use more information and can produce

better results for non-uniform and non-symmetric p(θ |D) distributions

Bayesian techniques show the problem of bias and variance that

depends on the number of training samples

Overall Bayesian techniques are more theoretically sound, but ML

techniques are simpler to implement and are nearly as accurate
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Bayesian Parameter Estimation for Arbitrary Density Models

Sources of Classi�cation Error

When developing a classi�er, we �rst estimate the posterior densities for

each category, then classify a test sample using a maximum decision rule.

The sources of error in such a system are:

Bayes or Indistinguishability Error - happens because of overlapping

class-conditional densities

Model Error - caused by selection of the wrong model. This is not

a�ected by the parameter estimation technique

Estimation Error - due to the �nite number of training samples. It

decreases with increasing cardinality of the data set
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Di�culties caused by Dimensionality

Di�culties Caused by Dimensionality

Many classi�cation problems involve samples in very high dimensional

spaces, i.e. with hundreds, or thousands of features

In this section we discuss the following considerations:
1 relation between dimensionality, number of training samples and

classi�cation accuracy
2 computational complexity of classi�er
3 over�tting
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Di�culties caused by Dimensionality

Classi�cation Accuracy vs. Number of Features

We are usually looking for statistically independent features based on

theoretical grounds

Suppose that we have 2-classes of multivariate normal densities with

equal covariance matrices, that is p(x |ωj)∼ N(µµµ j ,Σ) with all P(ωj)
equal for j = 1,2

Then the Bayes error is: P(e) = 1√
2π

∫
∞

r/2 e
−u2/2du, where

r2 = (µµµ1−µµµ2)TΣ−1(µµµ1−µµµ2)

For conditionally independent features: Σ = diag(σ2
1 , ...,σ

2
D), therefore

r2 = ∑
D
i=1 ( µi1−µi2

σi
)
2

Observe that the addition of features is expected to increase r2,
therefore reducing the Bayes error
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Di�culties caused by Dimensionality

Classi�cation Accuracy vs. Number of Features

Based on the previous result, the

addition of features with unequal

class-conditional means will

increase the separability of the

data

So it reasonable to add new

features if the classi�cation

performance with a given feature

set is not good enough

Figure: Projection of data to spaces of

reduced dimensionality increases the

Bayes error.
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Di�culties caused by Dimensionality

Classi�cation Accuracy vs. Number of Features and Number

of Training Samples

However, in practice, the addition of features may reduce the

classi�cation performance

This may happen because (1) the learning model is wrong, or (2) the

number of samples is insu�cient for the estimation of the

class-conditional densities

This is a signi�cant consideration in classi�er design that we will

revisit in Ch. 9
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Di�culties caused by Dimensionality

Computational Complexity

The computational load is a factor to be considered in classi�er design

To express the computational load we use the order of function f (x)

De�nition

Let f and h be two functions of x . We say that f (x) is of the order of

h(x), denoted by f (x) = O(h(x)) and read as "big oh of h(x)", if there
exist constants c and x0 such that |f (x)| ≤ c |h(x)|, ∀x > x0

Example

We assume that f (x) = a2x
2 +a1x +a0. Then f (x) = O(x2) because for

su�ciently large x , we can choose c and x0 such that |f (x)| ≤ c |x2|,
∀x > x0
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Di�culties caused by Dimensionality

Computational Complexity

When estimating the computational complexity of an algorithm we are

interested in the number of additions, multiplications and divisions, or

in the time and memory requirements

Let's see the example of computational complexity for a Bayes

classi�er
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Di�culties caused by Dimensionality

Computational Complexity

ML estimation (learning stage)

µ̂ = (1/n)∑
n
k=1 xk = O(dn)

Σ̂ = (1/n)∑
n
k=1(xk− µ̂)(xk− µ̂)T = O(d2n)

gi (x) =

−(1/2)(x−µi )
TΣ−1i (x−µi )− (d/2) ln2π− (1/2) ln |Σi |+ lnP(ωi )

−(1/2)(x−µi )
TΣ−1i (x−µi ) = O(dn) +O(d3)

(d/2) ln2π = O(1)
(1/2) ln |Σi |= O(d2n)
lnP(ωi ) = O(n)

Computations are repeated c times, hence the learning complexity is

O(cd2n)' O(d2n),

assuming that c << d or n and n > d
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Di�culties caused by Dimensionality

Classi�cation Complexity

Decision Rule

gi (x) =

−(1/2)(x−µi )
TΣ−1i (x−µi )− (d/2) ln2π− (1/2) ln |Σi |+ lnP(ωi )

gi (x) =−(1/2)(x−µi )
TΣ−1i (x−µi ) : O(d2)

−(d/2) ln2π− (1/2) ln |Σi |+ lnP(ωi ) : O(1)

Computations are repeated c times, hence the classi�cation

complexity is

O(cd2)' O(d2),

assuming that c << d

Hence, classi�cation stage is computationally simpler than learning

stage
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Di�culties caused by Dimensionality

Over�tting

Problem

When the number of samples is too small for the dimensionality, the

class models and decision surfaces may not be optimal

Possible Solutions

1 We can reduce the dimensionality by (1) selecting a subset of our

original features, or (2) computing features from the existing set

2 We can assume that all samples come from the same covariance

matrix and pool the training data

3 We can �nd a better estimate of Σ (1) by using prior estimate ΣΣΣ0 to

get a Bayesian type of estimate λ Σ0 + (1−λ )Σ̂ or (2) by applying a

threshold to covariances or even assuming statistical independence

(heuristic solution)
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Di�culties caused by Dimensionality

Over�tting Example

We have 10 data points

obtained by adding zero-mean,

Gaussian noise to a parabola

The two curves correspond to a

parabola and a 10-th degree

polynomial

While the 10-th degree

polynomial produces the best �t

for the training data, the

parabola is the closest model
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Di�culties caused by Dimensionality

Assume the Same Covariance Matrix for All Classes

Problem

We are asked to design a classi�er with insu�cient data for

distributions N(µµµ1,Σ1) and N(µµµ1,Σ2)

Solution

We make the simpli�cation that Σ1 = Σ2 = Σ, where Σ is estimated

over both classes

We normalize the data before estimating Σ
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Di�culties caused by Dimensionality

The Shrinkage Technique

This technique uses a weighted sum of individual covariances that

"shrink" toward a common estimate

Σi (α) =
(1−α)niΣi + αnΣ

(1−α)ni + αn
,

where 0< α < 1 is the regularizing parameter, ni is the number of

samples for each class, n is the total number of samples, i = 1, ...,c
and c is the number of classes

We can also shrink the common covariance matrix to an identity

matrix

Σ(β ) = (1−β )Σ + β I,

where 0< β < 1
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Principal Component Analysis
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2 Expectation-Maximization (EM)
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Component Analysis and Discriminants

Component Analysis for Dimensionality Reduction

As seen before, a large number of features can improve class

separability, but also complicate density estimation, increase

computational complexity, and the system may be more susceptible to

over�tting

One solution is to reduce the original dimensionality by linear

combinations of features

Linear techniques are very useful because they are analytically

tractable and computationally e�cient
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Component Analysis and Discriminants

Component Analysis for Dimensionality Reduction

Two popular techniques are (1) Principal Component Analysis, and (2)

Fisher Linear Discriminant along with its multidimensional

generalization called Multiple Discriminant Analysis

Both techniques project data to lower dimensional spaces

Principal Component Analysis seeks the projections that produce the

more accurate representation of the data in a least-squares sense

Fisher Linear Discriminant seeks the projections that best separate the

data into the di�erent classes in a least-squares sense
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Component Analysis and Discriminants Principal Component Analysis

Zero-dimensional Representation

First stage: representing Data Set by a Single Vector x0

Suppose a set of n d-dimensional samples x1, . . . ,xn

We want to �nd a vector x0 to represent the data

We require that x0 minimizes the squared error criterion function

J0(x0) =
n

∑
k=1

‖x0−xk‖2
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Component Analysis and Discriminants Principal Component Analysis

Zero-dimensional Representation

We express J0(x0) in terms of sample mean m = (1/n)∑
n
k=1 xk and it

follows that

J0(x0) =
n

∑
k=1

‖(x0−m)− (xk −m)‖2 = . . .

=
n

∑
k=1

‖(x0−m)‖2−
n

∑
k=1

‖(xk −m)‖2

Hence J0(x0) is minimized when x0 = m
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Component Analysis and Discriminants Principal Component Analysis

One-dimensional Representation

To obtain a representation of variability of data we project data onto a

line running through the sample mean

Assuming a unit vector e, line equation is: x = m+ αe , where α is

scalar distance from sample mean

Next, use xk =m+ αke, k = 1, . . . ,n, and �nd the optimal set of αk

by minimizing function

J1(α1, . . . ,αn,e) =
n

∑
k=1

‖(m+ αke)−xk‖2

We set ∂J1
∂αk

= 0, and obtain

αk = e
T (xk −m)

This is the projection of xk −m on to the line that passes through the

mean with the direction of e
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Component Analysis and Discriminants Principal Component Analysis

Finding the Best Line Direction

Next step is to �nd the direction e that produces the best

representation

To do this we �rst substitute the αk in J1

J1(e) =
n

∑
k=1

α
2
k −2

n

∑
k=1

α
2
k +

n

∑
k=1

‖(xk −m)‖2,

and use the de�nition for scatter matrix S = ∑
n
k=1(xk −m)(xk −m)T

to obtain

J1(e) =−eTSe+
n

∑
k=1

‖xk −m‖2
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Component Analysis and Discriminants Principal Component Analysis

Finding the Best Line Direction

Previously we obtained:

J1(e) =−eTSe+
n

∑
k=1

‖xk −m‖2

Hence, we look to maximize eTSe, subject to the constraint ‖e‖= 1

By the Langrangian multiplier optimization technique it follows that

we should optimize

u = e
TSe−λ (eTe−1)

Then solve
∂u

∂e
= 0⇒ 2Se−2λe = 0⇒ Se = λe
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Component Analysis and Discriminants Principal Component Analysis

Finding the Best Line Direction

From previous result: Se = λe

We observe that: eTSe = λeTe = λ

Hence, we are looking for the eigenvector emax with maximum

eigenvalue λmax in order to �nd the best vector direction

To perform the analysis we project the data onto a line through

sample mean with the orientation de�ned by emax
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Component Analysis and Discriminants Principal Component Analysis

Multi-dimensional Case

For a projection to a d ′-dimensional space the hyperplane is de�ned as:

x = m+
d ′

∑
i=1

αiei , where d ′ < d

The criterion function is:

Jd ′ =
n

∑
k=1

‖(m+
d ′

∑
i=1

αkiei )−xk‖
2

Jd ′ is minimized when ei for the eigenvectors of scatter matrix Sd ′

with the d ′ largest eigenvalues

Because Sd ′ is real and symmetric the eigenvectors are orthogonal

Coe�cients αi are called principal components
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Component Analysis and Discriminants Fisher Linear Discriminant

Discriminant Analysis

PCA �nds optimal data representations in the least square sense,

however this does not imply that the transformed features will produce

increased class separability

On the other hand discriminant analysis techniques look for directions

that distinguish between classes
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Component Analysis and Discriminants Fisher Linear Discriminant

Problem De�nition

Let's consider the problem of projecting data from d dimensions onto

a line

Let x1, . . . ,xn be the set of n points in a d dimensional space divided

into subsets Di belonging to categories ωi with cardinalities ni , where
i = 1,2.

Then the projections on to the direction determined by w with

|w |= 1 are

y = w
T
x

The projections produce a set of n samples yi with i = 1, . . . ,n divided

into subsets Y1 and Y2

Our problem is to �nd the direction of w that will maximize the

separation between the projected points in Y1 and Y2
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Component Analysis and Discriminants Fisher Linear Discriminant

Class Separability

Figure: Projection of data onto di�erent directions de�ned by w . Observe that

projection displayed in the right �gure produces greater separability than the

projection displayed in the left �gure
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Component Analysis and Discriminants Fisher Linear Discriminant

Criterion Function

Fisher Linear Discriminant seeks maximization of J(w) de�ned as

J(w) =
|my1−my2|2

s2y1 + s2y2

where

myi is the sample mean of ωi in the projected space:

myi = (1/ni ) ∑
y∈Yi

y = (1/ni ) ∑
x∈Di

w
T
x = w

T (1/ni ) ∑
x∈Di

x = w
Tmxi

s2yi is the scatter for projected samples of ωi :

s2yi = ∑
y∈Yi

(y −myi )
2
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Component Analysis and Discriminants Fisher Linear Discriminant

Scatter Matrices

Further we de�ne

Scatter matrices: Si = ∑x∈Di
(x−mxi )(x−mxi )

T , i = 1,2

Within-class scatter matrix: SW = S1 +S2

Because

s2yi = ∑
y∈Yi

(y −myi )
2 = ∑

y∈Yi

(wT
x−wT

mxi )
2

= w
T

∑
y∈Yi

[
(x−mxi )(x−mxi )

T
]
w = w

TSiw ,

s2y1 + s2y2 = w
TSWw
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Component Analysis and Discriminants Fisher Linear Discriminant

Between-class Scatter Matrix

Consider the numerator of J(w):

|my1−my2|2 = (my1−my2)2 = (wT
mx1−wT

mx2)
2

= w
T (mx1−mx2)

2
= w

T (mx1−mx2)(mx1−mx2)Tw

= w
TSBw ,

where SB is the between-class scatter matrix

SB = (mx1−mx2)(mx1−mx2)T
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Component Analysis and Discriminants Fisher Linear Discriminant

Scatter Matrices Notes

Within-class scatter matrix SW

Proportional to the sample covariance matrix

Symmetric and positive-semide�nite

Nonsingular if n > d

Between-class scatter matrix SB

Outer product of two vectors

Symmetric and positive-semide�nite

Its rank is at most 1
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Component Analysis and Discriminants Fisher Linear Discriminant

Optimizing the Criterion Function

We use the scatter matrix de�nitions it follow that the criterion

function is:

J(w) =
w

TSBw

wTSWw

This is a Rayleigh quotient

The w that maximizes J(w) must satisfy SBw = λSWw (generalized

eigenvalue problem)

If SW is nonsingular, we have the conventional eigenvalue problem

S−1W SBw = λw
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Component Analysis and Discriminants Fisher Linear Discriminant

Optimizing the Criterion Function

We do not need to solve

S−1W SBw = λw

Recall that SBw is at the direction of m1−m2

Hence the solution is:

w = S−1W (mx1−mx2)

After the projection, we make a decision in the unidimensional space
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Component Analysis and Discriminants Fisher Linear Discriminant

Classi�cation Rule

Assuming multivariate normal class-conditional densities p(x |ωi ) with

equal covariance matrices Σ, we recall from Ch. 2 that at the decision

boundary

w
T
x +w0 = 0,

where

w = Σ−1(µµµ1−µµµ2)

When we use the sample means and sample covariance matrix it

follows that w is the one that maximizes the Fisher linear discriminant

In this case, to classify we apply a threshold to Fisher's linear

discriminant
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Expectation-Maximization (EM)

Main Concept

Expectation-Maximization can be used to learn distribution parameters

θθθ when some features are missing

EM iteratively estimates the likelihood given the data that we have

Suppose a training set D = {x1, . . . ,xn}
Let xk = {xkg ,xkb} be a sample consisting of good and bad features

Let Dg be the set of good features and Db be the set of bad features

Likelihood function l(·): l(D |θθθ) = lnp(Dg ,Db|θ)

We de�ne the function Q(θθθ ;θθθ
i ):

Q(θθθ ;θθθ
i ) = EDb

[
l(D |θθθ)|Dg ;θθθ

i
]

= EDb

[
ln[p(Dg ,Db|θθθ)]p(Db|Dg ,θθθ

i )
]
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Expectation-Maximization (EM)

Main Concept

In Q(θθθ ;θθθ
i ):

Q(θθθ ;θθθ
i ) = EDb

[
p(Db|Dg ,θθθ

i ) lnp(Dg ,Db|θθθ)
]

θθθ
i : current best estimate for parameter vector θθθ : candidate for

improved estimate

In EM we calculate the likelihood of data for di�erent θθθ s and select

the candidate that maximizes Q(θθθ ;θθθ
i ), then set the best candidate to

θθθ
i+1

The procedure is continued till convergence
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Expectation-Maximization (EM)

Algorithm

Figure: Main steps of EM technique

Figure: Starting from an initial estimate

θθθ
0, EM �nd optimal θθθ

1 in M step. Then

we hold θθθ
1 constant and �nd value θθθ

2

that optimizes Q(θθθ ;θθθ
1). The procedure

continues till convergence. It is di�erent

from gradient search
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Expectation-Maximization (EM)

EM for Gaussian Mixtures

In several problems we may need to build a richer class of density

models than a single Gaussian

Then we can use a Gaussian mixture model. This model is a linear

superposition of Gaussian components: p(x) = ∑
K
k=1πkN(x |µµµk ,Σk),

where 0≤ pk ≤ 1 and ∑
K
k=1πk = 1

We de�ne a K -dimensional random variable z , such that

p(zk = 1) = πk

Another important quantity is p(zk = 1|x), which we call responsibility

and denote by γ(zk)

A generalized version of EM is frequently used to estimate parameters

of a Gaussian mixture model
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Expectation-Maximization (EM)

EM for Gaussian Mixtures - Algorithm

1 Initialize means µk , covariances Σk and mixing coe�cients πk , and

evaluate the initial value of log-likelihood
2 E step Evaluate the responsibilities using current parameter values

γ(znk) =
πkN(xn|µµµk ,Σk)

∑
K
j=1πjN(xn|µµµk ,Σk)

3 M step Re-estimate the parameters using current responsibilities

µµµ
new
k = (1/Nk)

N

∑
n=1

γ(znk)xn

Σnew
k = (1/Nk)

N

∑
n=1

γ(znk)(xn−µµµ
new
k )(xn−µµµ

new
k )T

π
new
k = Nk/N where, Nk =

N

∑
n=1

γ(znk)

4 Evaluate log likelihood

lnp(X |µµµ,Σ,πππ) =
N

∑
n=1

{
K

∑
k=1

πkN(xn|µµµk ,Σk)

}
5 Finish if convergence was reached, otherwise go to step 2.
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Expectation-Maximization (EM)

Example: EM for Gaussian Mixtures

Figure: EM algorithm convergence for a mixture of 3 Gaussian distributions.

S. Makrogiannis (DSU) Parameter Estimation October 22, 2015 27 / 28



Expectation-Maximization (EM)

Notes on EM

EM is very useful when optimization of Q(·; ·) is simpler than

optimization of ML function l(·)
In EM it is guaranteed that the log likelihood of data will increase

monotonically
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Introduction

In the previous chapter we estimated the class-conditional densities

assuming parametric forms

However unimodal parametric forms or products of functions may not

approximate closely the underlying density

It may be advantageous to use nonparametric techniques that make

no assumptions about the forms of the underlying densities

Here we discuss two nonparametric techniques:
1 estimating class-conditional densities p(x |ωj ) from sample patterns, for

example using Parzen kernels
2 estimating directly the posterior probabilities P(ωj |x). One example is

nearest neighbor classi�cation
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Density Estimation

Density Estimation

Probability P for vector x in region R:

P =
∫

R
p(x ′)dx ′

Let x1,x2, . . . ,xn, be n i.i.d. samples following p(x).

The probability for k of them to be inside R is:

Pk =

(
n
k

)
Pk(1−P)n−k

The expected value and variance are:

E [k] = nP, Var [k] = nP(1−P)

E [k/n] = P, Var [k/n] =
P(1−P)

n
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Density Estimation

Density Estimation

Binomial distribution peaks sharply about the mean. In that case

P ' k/n, especially for very large n.

Assuming that x does not change much in R, it follows that:

P =
∫

R
p(x ′′′)dx ′′′ ' p(x)V ,

where

V : volume of R
x : point in R

We combine previous results to arrive at:

p(x)' k/n

V
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Density Estimation

Density Estimation

Figure: Binomial distribution convergence. The relative probability Pk peaks
more sharply at the true probability as n increases. For n→ ∞ the estimate will
yield the true probability P = 0.7
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Density Estimation

Density Estimation Considerations

If we �x V and increase n, then P estimate becomes more accurate,

but p(x) estimate becomes an average over V :

P

V
=

∫
R p(x ′′′)dx ′′′∫

R dx ′

If we decrease V for �xed n to estimate p(x), then number of samples

k → 0, hence our estimate becomes useless

So, we cannot reduce V very much in practice
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Density Estimation

Density Estimation Considerations

In theory, assume that we have an unlimited number of samples

We de�ne Rk regions, where k = 1, . . . with n increasing with k . Let
Vn, kn, pn(x), be the volume of Rn, the number of samples in Rn,

and the density estimate in Rn respectively. It then follows that:

pn(x) =
kn/n

Vn

To reach an estimate of p(x) the following must be satis�ed:

lim
n→∞

Vn = 0, lim
n→∞

kn = ∞, lim
n→∞

kn/n = 0

These conditions ensure that we can estimate p(x) accurately, that

the frequency ratio will converge to P , and that pn(x) will converge in

general
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Density Estimation

Density Estimation Approaches

We can attempt to satisfy these conditions by the following approaches:
1 Shrink Rn by de�ning Vn as a function of n

Determine k from the data
We must ensure that pn(x) converges to p(x)
Parzen windows use this principle

2 De�ne kn as a function of n

Then Vn will have to grow till it encloses kn neighbors of x
This is the kn nearest neighbor estimation
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Density Estimation

Density Estimation Approaches

Figure: Two density estimation approaches: reduce Vn to estimate pn(x) more
accurately (top), or increase Vn to increase kn to estimate Pk more accurately
(bottom)
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Parzen Windows

Parzen Windows

The Parzen window method de�nes a window that may be a function

of the number of data points

More speci�cally, Rn is a d-dimensional hypercube

The volume of the hypecube is:

Vn = hdn

where hn: edge length of cube

To yield the number of points in Rn denoted by kn we use a window

function:

φ(u) =

{
1 |uj | ≤ 1/2 j = 1, . . . ,d

0 otherwise
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Parzen Windows

Parzen Windows

We de�ned the window function as:

φ(u) =

{
1 |uj | ≤ 1/2 j = 1, . . . ,d

0 otherwise

Then, the number of points inside the hypercube centered at x is given by:

kn =
n

∑
i=1

φ

(
x−xi
hn

)
From density estimation we have that:

pn(x) =
kn/n

Vn

By substitution it follows that: pn(x) = (1/n)∑
n
i=1

1
Vn

φ

(
x−xi
hn

)
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Parzen Windows

Parzen Windows

Before, we arrived at:

pn(x) = (1/n)
n

∑
i=1

1

Vn
φ

(
x−xi
hn

)
This is a general form for estimating density

This operation can also be considered as interpolation

We can choose di�erent function types for φ(·) to handle

discontinuities that may be caused by the original window function
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Parzen Windows

Parzen Windows

Next, we require that pn(x) be a density function

Hence, we need φ(x) to be a density function with conditions

φ(x)≥ 0

and ∫
φ(u)du = 1

If in addition Vn = hdn , then pn(x) is a density function too
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Parzen Windows

E�ect of Window Width hn

From previous analysis we observed that the size of Vn = hdn can a�ect

density estimation

Now we focus our interest on hn

First, we de�ne δn(x) as: δn(x) = (1/n) 1
Vn

φ

(
x

hn

)
pn(x) becomes: pn(x) = (1/n)∑

n
i=1 δn(x−xi )
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Parzen Windows

E�ect of Window Width hn

If hn is too large, then

δn(x−xi ) becomes a slowly varying function with a low peak
pn(x) becomes a smooth and "out-of-focus" estimate of p(x)

If hn is too small, then

δn(x−xi ) has a sharper peak and changes faster with distance
pn(x) becomes a sum of sharp kernels centered at the training samples
a�ected by noisy samples

We also note that:∫
δn(x−xi )dx =

∫
(1/n) 1

Vn
φ

(
x

hn

)
dx =

∫
φ(u)du = 1

Hence, the distribution is normalized
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Parzen Windows

E�ect of Window Width hn

If hn is too large, then the density estimate will be less accurate

If hn is too small, then he density estimate will be sensitive to

statistical variability

In real world problems, we must choose the kernel size as a trade-o�

between the two weaknesses

In an ideal world with unlimited training samples we could reduce the

kernel size and still get an accurate density pn(x) = p(x)
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Parzen Windows

Convergence De�nition

We consider pn(x) to be a random variable because it is a function of

n random samples xi , i = 1, . . . ,n

We denote the mean and variance of pn(x) by p̄n(x) and σ2
n (x)

Then pn(x) will converge to p(x), if:

lim
n→∞

p̄n(x) = p(x)

and

lim
n→∞

σ
2
n (x) = 0
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Parzen Windows

Convergence Conditions

To prove convergence, we place conditions on p(x), φ(u), and hn

Previous conditions are that p(·) is continuous at x , and that φ(·) is a

density function

We will show that the following conditions have to be met as well:

sup
u

φ(u) < ∞, lim
‖u‖→∞

φ(u)
d

∏
i=1

ui = 0

lim
n→∞

Vn = 0, lim
n→∞

nVn = ∞

These conditions ensure that φ(u) is bounded and that Vn must

approach zero but at a slower rate that 1/n
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Parzen Windows

Convergence of the Mean

First, we compute p̄n(x):

p̄n(x) = E [pn(x)] = (1/n)
n

∑
i=1

E

[
1

Vn
φ

(
x−xi
hn

)]

=
∫

1

Vn
φ

(
x−v
hn

)
p(v)dv =

∫
δn(x−v)p(v)dv

We observe that p̄n(x) is the result of convolving the window function

with the density function, therefore it is a blurred version of the

unknown density

However, when Vn→ 0, δn(x−v) becomes a delta function at x .

Hence, if p is continuous at x , then limn→∞ p̄n(x) = p(x)
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Parzen Windows

Convergence of the Variance

To avoid a noisy estimate, we need to ensure the convergence of variance:

σ
2
n (x) =

n

∑
i=1

E

[(
1

nVn
φ

(
x−xi
hn

)
− (1/n)p̄n(x)

)2
]

= nE

[
1

n2V 2
n

φ
2

(
x−xi
hn

)]
− (1/n)p̄2n(x)

=
1

nVn

∫
1

Vn
φ
2

(
x−v
hn

)
p(v)dv − (1/n)p̄2n(x)

If we drop the second term, bound φ , and use above expression for p̄n(x)
it follows that:

σ
2
n (x)≤ sup(φ(·)) p̄n(x)

nVn

S. Makrogiannis (DSU) Nonparametric Techniques October 30, 2015 21 / 33



Parzen Windows

Convergence of the Variance

Previously we arrived at:

σ
2
n (x)≤ sup(φ(·)) p̄n(x)

nVn

We need to start with a large Vn to reach a small variance

Still, because the numerator is �nite w.r.t n, we can still let Vn→ 0 as

long as nVn→ ∞ to obtain zero variance

This means that Vn can be V1/
√
n, for example

S. Makrogiannis (DSU) Nonparametric Techniques October 30, 2015 22 / 33



Parzen Windows

Gaussian Kernel Example

Suppose that the true density

p(x) is univariate normal, with

zero mean, and unit variance

Suppose we use a Gaussian

kernel for density estimation

given by:

φ(u) =
1√
2π

e−u
2/2

The density estimate at x is:

pn(x) = (1/n)
n

∑
i=1

1

hn
φ

(
x−xi
hn

)
where hn = h1/

√
n

Figure: Parzen kernel density estimation
for a univariate normal distribution
versus the number of samples and
window width. The contribution of each
point to the density is more visible for
smaller window widths. Larger n
improves density estimation
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Parzen Windows

Gaussian Kernel Example

Figure: Parzen kernel density estimation for a bivariate normal distribution versus
the number of samples and window width. Smaller window width produces
"noisier" estimates for �xed n
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Parzen Windows

Gaussian Kernel Example

Figure: Parzen kernel density estimation for a mixture of a uniform and a
triangular distribution. Observe that more samples improve estimation
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Parzen Windows

Parzen Kernel-based Classi�cation

In Parzen kernel-based classi�cation we estimate the class-conditional

density at each test point and make a decision using

Maximum-a-Posteriori rule

In this classi�er we can reduce the training error as much as we wish,

but we may cause over�tting

Gaussian windows are reasonable choices but it may take some

experimentation to �nd the window size
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Parzen Windows

Parzen Kernel-based Classi�cation

Strengths:

* no assumption about the density functions � we use the same

procedure

Weaknesses:

* requirement for a large number of samples

* computationally demanding because all training samples are used to

estimate densities each time

* when the dimensionality grows the demand for a large number of

samples grows exponentially (curse of dimensionality)
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Parzen Windows

Parzen Kernel-based Classi�cation

Figure: Decision boundaries versus window width h. Smaller h produces more
complicated decision boundaries (left column) than larger h (right column)
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Probabilistic Neural Networks (PNN)

Probabilistic Neural Network (PNN) Example

We will show how Parzen density-based classi�er can be implemented

as a neural network using PNN

Suppose we have n patterns, in a d-dimensional space divided into c
classes

PNN will have:

an input layer with d input units
an intermediate layer with n pattern units. Each input unit is
connected to all n pattern units
a category layer with c category units. Each pattern unit is connected
to only one category unit

Connections from input to pattern units carry weights w , which need

to be learned
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Probabilistic Neural Networks (PNN)

PNN Topology

Figure: PNN will have: an input layer with d input units; an intermediate layer
with n pattern units. Each input unit is connected to all n pattern units; a
category layer with c category units. Each pattern unit is connected to only one
category unit
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Probabilistic Neural Networks (PNN)

PNN Training

For each train pattern x , we normalize the weight s.t. ∑
d
i=1 x

2
i = 1

We link the input unit and the corresponding pattern unit with a link

that has a weight wj = xj , j = 1, . . . ,n

We denote the components of the jth pattern by xjk , k = 1, . . . ,d

Figure: PNN training algorithm

S. Makrogiannis (DSU) Nonparametric Techniques October 30, 2015 31 / 33



Probabilistic Neural Networks (PNN)

PNN Classi�cation

We normalize the test pattern x

We compute the net activation by inner product: netk = w
T
k x

Each output unit sums the contributions from all pattern units using

the nonlinear function e
netk−1

σ2 , σ : user-de�ned parameter

We use the window function to de�ne activation function:

φ(
x−wk

hn
)∼ e−(x−wk )

T (x−wk )/2σ2

= e
netk−1

σ2

Each pattern unit contributes to its associated category unit a signal

equal to type of probability of association with a training point

The sum of estimates gives the discriminant function gi (x). This is a
Parzen window estimate for the distribution

We apply a maximum likelihood rule to assign the pattern to a class
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Probabilistic Neural Networks (PNN)

PNN Testing

Figure: PNN Testing algorithm
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Parzen Windows

Parzen Windows

The Parzen window method de�nes a window that may be a function

of the number of data points

More speci�cally, Rn is a d-dimensional hypercube

The volume of the hypecube is:

Vn = hdn

where hn: edge length of cube

To yield the number of points in Rn denoted by kn we use a window

function:

φ(u) =

{
1 |uj | ≤ 1/2 j = 1, . . . ,d

0 otherwise

S. Makrogiannis (DSU) Nonparametric Techniques October 29, 2015 3 / 25



Parzen Windows

Parzen Windows

We de�ned the window function as:

φ(u) =

{
1 |uj | ≤ 1/2 j = 1, . . . ,d

0 otherwise

Then, the number of points inside the hypercube centered at x is given by:

kn =
n

∑
i=1

φ

(
x−xi
hn

)
From density estimation we have that:

pn(x) =
kn/n

Vn

By substitution it follows that: pn(x) = (1/n)∑
n
i=1

1
Vn

φ

(
x−xi
hn

)
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Parzen Windows

Parzen Windows

Before, we arrived at:

pn(x) = (1/n)
n

∑
i=1

1

Vn
φ

(
x−xi
hn

)
This is a general form for estimating density

This operation can also be considered as interpolation

We can choose di�erent function types for φ(·) to handle

discontinuities that may be caused by the original window function
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Parzen Windows

Parzen Windows

Next, we require that pn(x) be a density function

Hence, we need φ(x) to be a density function with conditions

φ(x)≥ 0

and ∫
φ(u)du = 1

If in addition Vn = hdn , then pn(x) is a density function too
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Parzen Windows

E�ect of Window Width hn

From previous analysis we observed that the size of Vn = hdn can a�ect

density estimation

Now we focus our interest on hn

First, we de�ne δn(x) as: δn(x) = (1/n) 1
Vn

φ

(
x

hn

)
pn(x) becomes: pn(x) = (1/n)∑

n
i=1 δn(x−xi )
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Parzen Windows

E�ect of Window Width hn

If hn is too large, then

δn(x−xi ) becomes a slowly varying function with a low peak
pn(x) becomes a smooth and "out-of-focus" estimate of p(x)

If hn is too small, then

δn(x−xi ) has a sharper peak and changes faster with distance
pn(x) becomes a sum of sharp kernels centered at the training samples
a�ected by noisy samples

We also note that:∫
δn(x−xi )dx =

∫
(1/n) 1

Vn
φ

(
x

hn

)
dx =

∫
φ(u)du = 1

Hence, the distribution is normalized
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Parzen Windows

E�ect of Window Width hn

If hn is too large, then the density estimate will be less accurate

If hn is too small, then he density estimate will be sensitive to

statistical variability

In real world problems, we must choose the kernel size as a trade-o�

between the two weaknesses

In an ideal world with unlimited training samples we could reduce the

kernel size and still get an accurate density pn(x) = p(x)
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Parzen Windows

Convergence De�nition

We consider pn(x) to be a random variable because it is a function of

n random samples xi , i = 1, . . . ,n

We denote the mean and variance of pn(x) by p̄n(x) and σ2
n (x)

Then pn(x) will converge to p(x), if:

lim
n→∞

p̄n(x) = p(x)

and

lim
n→∞

σ
2
n (x) = 0
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Parzen Windows

Convergence Conditions

To prove convergence, we place conditions on p(x), φ(u), and hn

Previous conditions are that p(·) is continuous at x , and that φ(·) is a

density function

We will show that the following conditions have to be met as well:

sup
u

φ(u) < ∞, lim
‖u‖→∞

φ(u)
d

∏
i=1

ui = 0

lim
n→∞

Vn = 0, lim
n→∞

nVn = ∞

These conditions ensure that φ(u) is bounded and that Vn must

approach zero but at a slower rate that 1/n

S. Makrogiannis (DSU) Nonparametric Techniques October 29, 2015 11 / 25



Parzen Windows

Convergence of the Mean

First, we compute p̄n(x):

p̄n(x) = E [pn(x)] = (1/n)
n

∑
i=1

E

[
1

Vn
φ

(
x−xi
hn

)]

=
∫

1

Vn
φ

(
x−v
hn

)
p(v)dv =

∫
δn(x−v)p(v)dv

We observe that p̄n(x) is the result of convolving the window function

with the density function, therefore it is a blurred version of the

unknown density

However, when Vn→ 0, δn(x−v) becomes a delta function at x .

Hence, if p is continuous at x , then limn→∞ p̄n(x) = p(x)
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Parzen Windows

Convergence of the Variance

To avoid a noisy estimate, we need to ensure the convergence of variance:

σ
2
n (x) =

n

∑
i=1

E

[(
1

nVn
φ

(
x−xi
hn

)
− (1/n)p̄n(x)

)2
]

= nE

[
1

n2V 2
n

φ
2

(
x−xi
hn

)]
− (1/n)p̄2n(x)

=
1

nVn

∫
1

Vn
φ
2

(
x−v
hn

)
p(v)dv − (1/n)p̄2n(x)

If we drop the second term, bound φ , and use above expression for p̄n(x)
it follows that:

σ
2
n (x)≤ sup(φ(·)) p̄n(x)

nVn
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Parzen Windows

Convergence of the Variance

Previously we arrived at:

σ
2
n (x)≤ sup(φ(·)) p̄n(x)

nVn

We need to start with a large Vn to reach a small variance

Still, because the numerator is �nite w.r.t n, we can still let Vn→ 0 as

long as nVn→ ∞ to obtain zero variance

This means that Vn can be V1/
√
n, for example

S. Makrogiannis (DSU) Nonparametric Techniques October 29, 2015 14 / 25



Parzen Windows

Gaussian Kernel Example

Suppose that the true density

p(x) is univariate normal, with

zero mean, and unit variance

Suppose we use a Gaussian

kernel for density estimation

given by:

φ(u) =
1√
2π

e−u
2/2

The density estimate at x is:

pn(x) = (1/n)
n

∑
i=1

1

hn
φ

(
x−xi
hn

)
where hn = h1/

√
n

Figure: Parzen kernel density estimation
for a univariate normal distribution
versus the number of samples and
window width. The contribution of each
point to the density is more visible for
smaller window widths. Larger n
improves density estimation
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Parzen Windows

Gaussian Kernel Example

Figure: Parzen kernel density estimation for a bivariate normal distribution versus
the number of samples and window width. Smaller window width produces
"noisier" estimates for �xed n
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Parzen Windows

Gaussian Kernel Example

Figure: Parzen kernel density estimation for a mixture of a uniform and a
triangular distribution. Observe that more samples improve estimation
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Parzen Windows

Parzen Kernel-based Classi�cation

In Parzen kernel-based classi�cation we estimate the class-conditional

density at each test point and make a decision using

Maximum-a-Posteriori rule

In this classi�er we can reduce the training error as much as we wish,

but we may cause over�tting

Gaussian windows are reasonable choices but it may take some

experimentation to �nd the window size
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Parzen Windows

Parzen Kernel-based Classi�cation

Strengths:

* no assumption about the density functions � we use the same

procedure

Weaknesses:

* requirement for a large number of samples

* computationally demanding because all training samples are used to

estimate densities each time

* when the dimensionality grows the demand for a large number of

samples grows exponentially (curse of dimensionality)
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Parzen Windows

Parzen Kernel-based Classi�cation

Figure: Decision boundaries versus window width h. Smaller h produces more
complicated decision boundaries (left column) than larger h (right column)
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Probabilistic Neural Networks (PNN)

Probabilistic Neural Network (PNN) Example

We will show how Parzen density-based classi�er can be implemented

as a neural network using PNN

Suppose we have n patterns, in a d-dimensional space divided into c
classes

PNN will have:

an input layer with d input units
an intermediate layer with n pattern units. Each input unit is
connected to all n pattern units
a category layer with c category units. Each pattern unit is connected
to only one category unit

Connections from input to pattern units carry weights w , which need

to be learned
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Probabilistic Neural Networks (PNN)

PNN Topology

Figure: PNN will have: an input layer with d input units; an intermediate layer
with n pattern units. Each input unit is connected to all n pattern units; a
category layer with c category units. Each pattern unit is connected to only one
category unit
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Probabilistic Neural Networks (PNN)

PNN Training

For each train pattern x , we normalize the weight s.t. ∑
d
i=1 x

2
i = 1

We link the input unit and the corresponding pattern unit with a link

that has a weight wj = xj , j = 1, . . . ,n

We denote the components of the jth pattern by xjk , k = 1, . . . ,d

Figure: PNN training algorithm
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Probabilistic Neural Networks (PNN)

PNN Classi�cation

We normalize the test pattern x

We compute the net activation by inner product: netk = w
T
k x

Each output unit sums the contributions from all pattern units using

the nonlinear function e
netk−1

σ2 , σ : user-de�ned parameter

We use the window function to de�ne activation function:

φ(
x−wk

hn
)∼ e−(x−wk )

T (x−wk )/2σ2

= e
netk−1

σ2

Each pattern unit contributes to its associated category unit a signal

equal to type of probability of association with a training point

The sum of estimates gives the discriminant function gi (x). This is a
Parzen window estimate for the distribution

We apply a maximum likelihood rule to assign the pattern to a class
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Probabilistic Neural Networks (PNN)

PNN Testing

Figure: PNN Testing algorithm
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Nearest Neighbor Estimation

kn Nearest Neighbor Estimation

In this method, to estimate p(x) from n training samples we grow the

region Rn with volume Vn around x such that it encloses kn samples

The samples enclosed by Vn are the kn nearest-neighbors of x

We estimate density by

pn(x) =
kn/n

Vn

We can show that the conditions limn→∞ kn = ∞ and limn→∞ kn/n = 0

are necessary and su�cient for pn(x) to converge to p(x) at points
where p(x) is continuous

Assume that kn =
√
n. Then for a very large n we have that

Vn ' V = 1/(
√
np(x)), following the form V1/

√
n that we discussed

before

While pn(x) is continuous, the gradient is not. Still, the points of
discontinuity are more frequently not close to the training points
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Nearest Neighbor Estimation

The k-Nearest Neighbor (k-NN) Rule Error Rate

Figure: kn density estimation for uni- and multi-variate cases
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Nearest Neighbor Estimation

kn Nearest Neighbor (NN) and Parzen-window Estimation

We will compare the estimates by Parzen and kn NN

For n = 1 and kn =
√
n = 1 the kn NN estimate becomes

pn(x) =
1

2|x−x1|

This is a poor estimate with integral diverging to in�nity

For larger n, the estimate becomes more accurate but the integral

remains in�nite

In Parzen window approach we can change kn according to kn = k1
√
n

by varying k1
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Nearest Neighbor Estimation

kn Nearest Neighbor (NN) and Parzen-window Estimation

Figure: kn density estimation for variable n, kn. Larger kn improves density
estimates
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Nearest Neighbor Estimation

A Posteriori Probability Estimation

Suppose that we have n training points. ni of them that belong to

category ωi and that we want to estimate the posterior probability

P(ωi |x) at a point x

We can use the Bayesian decision rule for this purpose. We place a

volume V around x . Let k be the total number of samples inside

volume V , and ki be the number of samples inside V that belong to ωi

Then the likelihood is: p(x |ωi ) =
ki/ni
V

Unconditional density: p(x) = k/n
V

Priors: p(ωi ) = ni/n

By use of Bayes rule:

Pn(ωi |x) =
p(x |ωi )p(ωi )

p(x)
=

ki/ni
V

ni
n

k/n
V

=
ki
k
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The Nearest Neighbor Rule

The Nearest Neighbor Rule

Let Dn be a set of training points, or prototypes, Dn = {x1, . . . ,xn}
and let x be a test point that is closest to the training point x ′ ∈Dn

The nearest neighbor rule will classify x to the class of x ′

This is a suboptimal procedure; it yields an error rate that is greater

than the Bayes rate
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The Nearest Neighbor Rule

The Nearest Neighbor Rule

We consider the prototype labels to be random variables with probabilities

equal to posteriors P(ωi |x ′)
Assuming that x and x ′ are su�ciently close, it follows that

P(ωi |x)' P(ωi |x ′)
Then the category ωm of test point x is found by:

ωm = argmax
i

P(ωi |x)

This rule will partition the feature space into regions de�ned by a neighbor

similarity measure

This is called Voronoi tesselation

Figure: Voronoi Tesselation using NN rule
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The Nearest Neighbor Rule

The k-Nearest Neighbor (k-NN) Rule

This rule classi�es a point x by examining the labels of the k nearest

neighbors and applying majority voting

We consider the 2-class problem with k being odd

Labels ωi in each of the k neighbors are random variables with

probabilities P(ωi |x), i = 1,2

k-NN rule selects class ωm, if a majority of k nearest neighbors are

labeled ωm. This event has a probability of

k

∑
i=(k+1)/2

(
k
i

)
P(ωm|x)i [1−P(ωm|x)]k−i

when k increases, the probability for selecting ωm increases
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The Nearest Neighbor Rule

The k-Nearest Neighbor (k-NN) Rule

Figure: k NN rule example for k = 5
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The Nearest Neighbor Rule

The k-Nearest Neighbor (k-NN) Rule Error Rate

Figure: k NN rule error rate for variable k
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The Nearest Neighbor Rule

Considerations for the k-Nearest Neighbor (k-NN) Rule

This rule can be considered as an attempt to estimate posterior

probabilities P(ωi |x) from samples

A large value of k reduces the error rate

However, we still need to keep the neighbors x ′ around x to be small

enough so that P(ωi |x)' P(ωi |x ′)
In practice, this means that k should be a small fraction of n
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The Nearest Neighbor Rule

Computational Complexity of the k-Nearest Neighbor Rule
(k-NN)

Suppose n samples with d dimensions. We are looking for the nearest

neighbor to a point x

The simplest approach for this is:
1 Calculate Euclidean distances from all training points to x

′

2 Find the point with minimum distance

Computational complexity is O(dn2)
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The Nearest Neighbor Rule

Reducing Computational Complexity of the k-Nearest
Neighbor Rule (k-NN)

Basic approaches

1 Partial distance

2 Prestructuring with a search tree

3 Editing prototypes - by eliminating non-informative prototypes during

training
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The Nearest Neighbor Rule

Reducing Computational Complexity of the k-Nearest
Neighbor Rule (k-NN)

Partial distance

1 We calculate distances using a subset of the full d-dimensional space

Dr (a,b) =

(
r

∑
k=1

(ak −bk)
2

)1/2

, r ≤ d

2 If the distance exceeds a limit, then we do not compute further
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The Nearest Neighbor Rule

Reducing Computational Complexity of the k-Nearest
Neighbor Rule (k-NN)

Prestructuring with a search tree

1 Here we create a search tree with linked prototypes

2 In classi�cation stage, we compute distances from x to linked "entry"

prototypes

3 We �nd the closest prototype and �nd its linked prototypes

4 We compute distances from x to these prototypes

5 Repeat until we reach no other tree elements
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The Nearest Neighbor Rule

Reducing Computational Complexity of the k-Nearest
Neighbor Rule (k-NN)

Editing prototypes

We eliminate non-informative prototypes during training
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Metrics and Nearest Neighbor Classi�cation

Metrics and Nearest Neighbor Classi�cation

The central component of a nearest neighbor classi�er is the distance

function D(·, ·) between patterns

D(·, ·) is usually a metric
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Metrics and Nearest Neighbor Classi�cation

Properties of Metrics

Let a,b,c be three vector data points in a vector space Rd with

dimensionality d . Then a metric D : Rd ×Rd → R must have the following

properties

Nonnegativity: D(a,b)≥ 0

Re�exivity: D(a,b) = 0⇔ a = b

Symmetry: D(a,b) = D(b,a)

Triangle inequality: D(a,b)+D(b,c)≥ D(a,c)
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Metrics and Nearest Neighbor Classi�cation

Metrics

Minkowski Metric

A general class of metrics for d-dimensional patterns is the Minkowski

metric given by

Lk(a,b) =

(
d

∑
i=1

|ai −bi |k
)1/k

.

This is also called the Lk norm

L1 norm: Manhattan or city block distance. This is the shortest path

between a and b. In this path each segment is parallel to the

coordinate axes

L2 norm: Euclidean distance

L∞ norm: corresponds to the maximum of the distances between the

projections of a and b onto each of the d coordinate axes
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Metrics and Nearest Neighbor Classi�cation

Minkowski Metrics Example

Figure: Isosurfaces for L1 (white), L2 (light gray), L4 (dark gray), and L∞ (pink)
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Metrics and Nearest Neighbor Classi�cation

Metrics

Tanimoto Metric

This is mostly used in taxonomy to �nd a distance between two sets S1 and

S2:

DTanimoto(S1,S2) =
n1+n2−2n12
n1+n2−n12

where n1,n2 are the cardinalities of sets S1 and S2, and n12 is the

cardinality of S1∩S2

S. Makrogiannis (DSU) Nonparametric Techniques November 6, 2015 23 / 26



Metrics and Nearest Neighbor Classi�cation

Tangent Distance

On several occasions the

computation of a speci�c metric

in an NN classi�er may be

sensitive to the problem of

invariance

For example, suppose we need

to classify digits using 10×10

pixel grayscale images

Then a small translation of a

digit by a few pixels may change

the metric computation

signi�cantly

One can reduce this problem by

use of the tangent distance

Figure: In this example the digit 8 is
closer to the prototype of digit 5 than
the shifted digit 5
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Metrics and Nearest Neighbor Classi�cation

Tangent Distance

The general approach for addressing

variability is to construct tangent

vectors for all transformations

Let x ′ be a prototype, αi be a

transformation parameter, and Fi (x
′;αi )

be the transformed prototype

Then for each transformation we can

construct the tangent vector

TVi = Fi (x
′;αi )−x ′

This process produces an r ×d matrix

T for each vector x ′ that corresponds
to the tangent vectors at x ′

Figure: Generation of tangent
vectors using rotation and line
thinning
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Metrics and Nearest Neighbor Classi�cation

Tangent Distance

To reduce the computation load we can

sample the tangent space to create a

linear subspace

Then we compute the tangent distance

between x ′ and x

Dtan(x
′,x) =min

a
‖(x ′+Tααα)−x‖

So we are looking for the smallest

Euclidean distance from x ′ to x

In classi�cation we need to �nd

optimizing value of αi

In that case we �nd the optimal ααα using

gradient descent or matrix methods

Figure: Euclidean space
produced by tangent vectors
TV1 and TV2
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Introduction

Pattern classi�cation approaches can be categorized into generative

and discriminant

Generative approaches �rst estimate models of class-conditional

probability density that generate the training patterns, then de�ne the

discriminant function. These methods usually assume some parametric

form of density

Discriminant approaches �nd the discriminant function directly without

making any assumptions about the distribution of the training patterns

This chapter deals with discriminant functions that are either linear in

components of pattern vector x , or linear in a function of x
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Introduction

Linear discriminant functions are analytically tractable and

computationally e�cient

They can be used for trial classi�ers

We can �nd a linear discriminant function by minimizing a criterion

function

The usual criterion function is related to the training error, that is the

average loss for classifying the training patterns

A major consideration is to ensure that the discriminant function will

classify at a good rate unknown, new patterns
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Linear Discriminant Functions and Decision Surfaces

Linear Discriminant Function

A linear discriminant function g(x) is typically of the form:

g(x) =w
T
x+w0

where x is the pattern vector, w is the weight vector, and w0 is the

bias or threshold weight

In general, when we have c classes, we need to �nd c discriminant

functions
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Linear Discriminant Functions and Decision Surfaces Two-category Case

Two categories

Suppose a problem with two categories ω1 and ω2

Then we can de�ne a single discriminant function by

g(x) = g1(x)−g2(x)

The decision rule is:

Decide ω1 if g(x)> 0; decide ω2 if g(x)< 0

The decision surface is represented by g(x) = 0. For a linear

discriminant function the decision surface is a hyperplane H

Let points x1,x2 on the decision surface. Then:

w
T
x1 =w

T
x2⇔w

T (x1−x2) = 0

We observe that w is normal to the hyperplane
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Linear Discriminant Functions and Decision Surfaces Two-category Case

Two categories

g(x) also gives a measure of the distance of the point x to the

hyperplane

We can write x as:

x = xp+ r
w

‖w‖
where xp is the normal projection of x to H, r is the algebraic distance

Given that g(xp) = 0, it follows that

g(x) =w
T
x+w0 =w

T (xp+ r
w

‖w‖
)+w0 =w

T
xp+ r

w
T
w

‖w‖
+w0

⇔ g(x) =w
T
xp+ r‖w‖+w0⇔ g(x) = r‖w‖⇔ r =

g(x)

‖w‖
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Linear Discriminant Functions and Decision Surfaces Two-category Case

Two categories

A linear discriminant function

produces a hyperplane decision

surface

The weight vector w determines

the orientation and the bias w0

determines the location of the

hyperplane

g(x) is proportional to the

distance of point x from the

hyperplane

w points toward the positive

side of the hyperplane where

g(x)> 0
Figure: Linear decision boundary for

two categories
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Linear Discriminant Functions and Decision Surfaces Multicategory Case

Multiple categories

To address classi�cation into

multiple c categories one could

i) make c decisions for ωi versus

not ωi , or ii) de�ne c(c−1)/2
discriminants for all possible

class pairs

However these strategies can

lead to regions of unde�ned

classi�cation

Figure: One-against-all and taking all

pairwise discriminant may lead to

ambiguous decision regionsS. Makrogiannis (DSU) Linear Discriminant Functions November 12, 2015 9 / 17



Linear Discriminant Functions and Decision Surfaces Multicategory Case

Multiple categories

To avoid these shortcomings we can use a set of discriminant functions

gi (x), i = 1, ...,c corresponding to each category, with a decision rule:

Assign feature vector x to class ωi , if gi (x)> gj(x) ∀j 6= i

This classi�er can be considered as a network or linear machine that

computes c discriminant functions and makes a decision using a

maximum operator
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Linear Discriminant Functions and Decision Surfaces Multicategory Case

Multiple categories

Let Ri ,Rj be the decision regions corresponding to categories ωi ,ωj

If Ri ,Rj are contiguous, then at the boundary Hij between Ri ,Rj we

have that

gi (x) = gj(x)⇔ (wi −wj)
T
x+(wi0−wj0) = 0

We observe that wi −wj is normal to Hij and similarly to the

two-category case the distance from x to Hij is

(gi (x)−gj(x)/‖wi −wj‖
In a linear machine the decision regions are convex, and every decision

region is singly connected, therefore this classi�er is best suited for

unimodal class-conditional densities p(x |ωi )
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Linear Discriminant Functions and Decision Surfaces Multicategory Case

Multiple categories

Figure: Decision Boundaries for linear machines
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Generalized Linear Discriminant Functions

Higher Order Discriminant Functions

Linear discriminant:

g(x) = w0+
d

∑
i=1

wixi

where wi : components of x

Quadratic discriminant includes second order terms xixj :

g(x) = w0+
d

∑
i=1

wixi +
d

∑
i=1

d

∑
j=1

wijxixj

By adding higher order terms we generate a polynomial discriminant
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Generalized Linear Discriminant Functions

Generalized Linear Discriminant Functions

The generalized discriminant function is de�ned as:

g(x) =
d̂

∑
i=1

αiyi (x) = ααα
T
y

where ααα : d̂-dimensional vector

yi (x) : arbitrary functions of x , also called φ functions

g(x) may be nonlinear in x but is linear in y

Functions yi (x) map points from a d-dimensional space to a

d̂-dimensional space

These mappings may simplify the original problem to that of �nding a

linear discriminant function
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Generalized Linear Discriminant Functions

Generalized Linear Discriminant Functions - Example

Let g(x) be:

g(x) = α1+α2x+α3x
2

Then y is :

y =

 1

x
x2


The inherent dimensionality of

the data is 1

The decision regions in y -space

are convex, but they are

non-convex in x-space

Figure: The φ functions transform a line

to a parabola and creates a non-simply

connected decision region in the x-space
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Generalized Linear Discriminant Functions

Generalized Linear Discriminant Functions

The mapping to a higher dimensional space while interesting in

concept, it implies a requirement for a lot more training data because

of the curse of dimensionality

We can address this drawback by imposing a constraint of large

margins between the training samples. This approach is used in

Support Vector Machines (SVM)

S. Makrogiannis (DSU) Linear Discriminant Functions November 12, 2015 16 / 17



Generalized Linear Discriminant Functions

Linear Discriminant Functions and Augmented Vectors

For the linear discriminant we have that:

g(x) = w0+
d

∑
i=1

wixi =
d

∑
i=0

wixi

where x0 = 1

Then g(x) = αααT
y :

y =


1

x1
...

xd

=

(
1

x

)
and ααα =


w0

w1

...

wd

=

(
w0

w

)

This is a transformation from a d-dimensional to a d +1-dimensional

space creates a hyperplane passing from the origin

We reduce the problem of �nding a weight vector w and a threshold

weight w0 to that of �nding just a weight vector ααα
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The Two-category Linearly Separable Behavior

The Two-category Linearly Separable Behavior

Linearly separable samples

Suppose a set of samples D = {y1,y2, . . . ,yn}
We are looking for a weight vector a in a linear discriminant function
g(y) = aTy

If there exists a weight vector that classi�es all samples correctly, then the
samples are said to be linearly separable

By the decision rule, a sample yi is classi�ed correctly to ω1, if a
Tyi > 0, and

is classi�ed correctly to ω2, if a
Tyi < 0

If we negate the samples in ω2 �a process called normalization� then we are
looking for a weight vector a, such that aTyi > 0, ∀yi ∈D

Such a vector is called a separating vector, or solution vector

S. Makrogiannis (DSU) Linear Discriminant Functions November 17, 2015 3 / 12



The Two-category Linearly Separable Behavior

The Two-category Linearly Separable Behavior

The weight vector can be considered as a point in the weight space

Each sample places a constraint on the location of the solution vector

Assuming normalization, the solution vector must be located on the positive
side of the separating hyperplane

The solution vector lies on the intersection of n half-spaces. This region is
called the solution region

Figure:
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The Two-category Linearly Separable Behavior

The Two-category Linearly Separable Behavior

Margins

Based on previous discussion, we can tell that the solution vector is not
unique

We can impose additional constraints:
one is to look for the unit vector that maximizes the minimum distance from
the samples to the separating hyperplane
another is to look for the minimum length weight vector a such that
aTy ≥ b, where b is a positive constant called margin

The objective is to �nd a solution vector that is closer to the middle of the
solution region, therefore the classi�er will perform well for unlabeled samples

Figure:
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The Two-category Linearly Separable Behavior

Gradient Descent

To �nd a solution of aTyi > 0 we can de�ne a criterion function J(a) and
seek the minimizing vector a

Function minimization can be achieved by the gradient descent technique

The gradient descent begins from an initial value of a and moves along the
negative of the gradient:

a(k+1) = a(k)−n(k)∇∇∇J(a(k))

where n is a positive scale factor or learning rate (step size)

This method is dependent on n(k): if it's too small, convergence is slow,
whereas if it's too large, the algorithm may overshoot or diverge

Figure:
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The Two-category Linearly Separable Behavior

Setting the Learning Rate n(k)

The second order Taylor expansion of the criterion function J(a) at a is:

J(a)' J(a(k))+∇∇∇JT (a−a(k))+(1/2)(a−a(k))TH(a−a(k))

By using the gradient descent equation we get:

J(a(k+1))' J(a(k))+n(k)‖∇∇∇J‖2+(1/2)n2(k)∇∇∇JTH∇∇∇J

where H is the Hessian matrix of second order derivatives ∂2J
∂ai∂aj

We can show that J(a(k+1)) is minimized by:

n(k) =
‖∇∇∇J‖2

∇∇∇JTH∇∇∇J

If the criterion function is quadratic in the region of interest, then H is a
constant and n is a constant as well
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The Two-category Linearly Separable Behavior

Newton's Algorithm

In this method we choose a(k+1) to minimize the second order expansion

This yields the equation:

a(k+1) = a(k)−H−1∇∇∇J

Newton's algorithm achieves faster convergence

However it requires that the Hessian is non-singular and implies increased
computational cost O(d3)

Figure:
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The Two-category Linearly Separable Behavior

Gradient Descent vs. Newton's Algorithm

Figure: Newton's algorithm (black line) converges in fewer steps than gradient descent
(red line), however it is more computational intensive as it requires inversion of the
Hessian
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Perceptron Criterion Function

The Perceptron Criterion Function

The only missing piece is now the criterion function J(a)

Since we need to minimize this function, one obvious option is the number of
misclassi�ed samples. This function is discontinuous, therefore gradient
calculation may be problematic

We can use the linear discriminant function to de�ne the Perceptron criterion
function after normalizing the patterns:

Jp(a) = ∑
y∈Y

(−aTy)

where Y (a) is the set of samples misclassi�ed by a

This criterion function is always nonnegative because aTy ≤ 0 for any
misclassi�ed sample
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Perceptron Criterion Function

The Perceptron Criterion Function

We have that:
∇∇∇Jp = ∑

y∈Y
(−y)

The update rule in gradient descent becomes:

a(k+1) = a(k)+n(k) ∑
y∈Yk

y

where Yk is the set of samples misclassi�ed by a(k)

In the Batch Perceptron algorithm the
next vector is computed by adding the a
multiple of the sum of misclassi�ed
samples to the weight vector from
previous iteration
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Perceptron Criterion Function

Perceptron Learning

If classes are linearly separable then the perceptron rule will converge to a valid
solution

A version of the perceptron rule uses variable learning rate

However, this technique will converge only under speci�c conditions

On the other hand, if the two classes are not linearly separable, the perceptron
rule will not converge

Because there will always be at least one misclassi�ed sample, the corrections
in perceptron rule will continue with no end

One approach to solve this problem is to use variable rates n(k) approaching
zero as k → ∞
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Minimum Squared Error Techniques

Minimum Squared Error Techniques

The previous criterion functions use the misclassi�ed samples

Here we introduce techniques that use all samples for estimation of the

weight vector

Now we are looking to solve aTyi = bi , where bi is a set of arbitrary constants
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Minimum Squared Error Techniques

Minimum Squared Error (MSE) Techniques

So we are looking for a solution of a system of linear equations

Using matrix notation, we are looking to �nd a weight vector that satis�es
y10 y12 . . . y1d
y20 y22 . . . y2d
...

...
...

...
...

...

yn0 yn2 . . . ynd




a0
a1
...

ad

=


b0
b1
...
...

bn

 , Ya = b

If Y were non-singular, we could solve for a = Y −1b

But Y is rectangular with more rows than columns, therefore our system is

overdetermined and usually there is no exact solution
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Minimum Squared Error Techniques

Minimum Squared Error (MSE) Techniques

Still, we can �nd an approximate solution of Ya = b by minimizing

e = Ya−b

We can de�ne the equivalent criterion function Js(a):

Js(a) = ‖Ya−b‖2 =
n

∑
i=1

(aTyi −bi )
2

We can solve this problem using a gradient search technique

Otherwise, we form the gradient ∇∇∇Js and set it to zero:

∇∇∇Js =
n

∑
i=1

2(aTyi −bi )yi = 2Y T (Ya−b)

Y T (Ya−b) = 0⇔ Y TYa = Y Tb
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Minimum Squared Error Techniques

Minimum Squared Error (MSE) Techniques

In the equation Y TYa = Y Tb, we observe that Y TY is a d ×d square

matrix that is often nonsingular

Then the solution is:

a = (Y TY )
−1
Y Tb

⇔ a = Y †b

where the d ×n matrix Y † ≡ (Y TY )
−1
Y T is called the pseudoinverse of Y

with Y †Y = I , but in general YY † 6= I

Y † is de�ned as:

Y † ≡ lim
ε→0

(Y TY + εI )−1Y T

We can show that this limit always exists and that a = Y †b is a solution to

the MSE problem

We note that the MSE solution depends on b. If b is �xed, the MSE solution

does not necessarily yield the separating vector in a linearly separable case

But MSE may yield a useful discriminant function in both separable and

nonseparable cases
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Minimum Squared Error Techniques

The LMS Procedure

The MSE criterion function Js(a) = ‖Ya−b‖2 can be minimized by gradient

descent

It addresses problems of singularity of Y TY

We don't have to deal with large matrices in data of high dimensionality
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Minimum Squared Error Techniques

The LMS Procedure

From previous result, the gradient of the MSE criterion function is:

∇∇∇Js = 2Y T (Ya−b)

Then the update rule becomes

a(k+1) = a(k)−n(k)∇∇∇J(a(k)) = a(k)+n(k)Y T (b−Ya(k))

We can show that if n(k) = n(1)/k , where n(1) is a positive constant, then

this rule converges to a solution of Y T (Ya(k)−b) = 0

Widrow-Ho� or LMS rule

We can consider each sample

sequentially to derive:

a(k+1)= a(k)+n(k)(b(k)−aT (k)yk)yk
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Minimum Squared Error Techniques

Comparing Perceptron with MSE

The perceptron rule always �nds a

solution if classes are linearly

separable but does not converge if

classes are nonseparable

The MSE approach will converge to

a solution but it may not be the

separating hyperplane if classes are

linearly separable
Figure: The LMS algorithm does not

necessarily converge to the separating

hyperplane even if the classes are linearly

separable
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Ho-Kashyap Techniques

Ho-Kashyap Techniques

We noted that the MSE solution does not necessarily converge to the

separating hyperplance for linearly separable classes

This is mainly due to the selection of a �xed arbitrary margin vector b in MSE

However by de�nition of linear separability, if the classes are linearly

separable, then ∃â, b̂ : Y â = b̂ > 0

One approach for �nding the separating hyperplane using MSE would be to

�nd both the separating vector a and margin vector b

This can be achieved in the following steps
1 Use gradient descent to �nd b

2 Use MSE approach to �nd a

3 Iterate until convergence
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Ho-Kashyap Techniques

Ho-Kashyap Descent Procedure

The gradients of MSE criterion function Js(a) = ‖Ya−b‖2 in a and b are

∇∇∇aJs =
n

∑
i=1

2(aTyi −bi )yi = 2Y T (Ya−b)

∇∇∇bJs =
n

∑
i=1

(−2)(aTyi −bi ) =−2(Ya−b)

For a speci�c b, the MSE solution for a is a = Y †b, where

Y † ≡ (Y TY )
−1
Y T

We use gradient descent to �nd b; however we must keep the constraint

b > 0
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Ho-Kashyap Techniques

Ho-Kashyap Descent Procedure

We initialize b to a positive value

and set to zero all positive

components of ∇∇∇bJs by use of

∇∇∇bJ
−
s = 1/2[∇∇∇bJs −|∇∇∇bJs |] in the

update rule:

b(k+1)=b(k)−(n/2)[∇∇∇bJs−|∇∇∇bJs |]

We compute the weight vector

a(k+1) = Y †b(k+1)
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