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1 Introduction

The branch of mathematics that deals with properties of integers
Z = {. . . ,−2,−1, 0, 1, 2, . . .} or natural numbers N = {0, 1, 2, . . .} has been
traditionally called Number Theory.

Number Theory is a significant topic because:

• It is a basic piece of math as you can build other fields from natural
numbers:

N negation−−−−−→ Z division−−−−→ Q real analysis−−−−−−−→ R
√
−1−−→ C.

• It is an elegant field.

”Mathematics is the queen of sciences and number theory is the
queen of mathematics.”

- Carl Friedrich Gauss

Number theory uses techniques from algebra, analysis, geometry, logic,
computer science and contributes to the development of these fields.

• Number theory finds applications in different fields such as RSA public
key cryptography and coding theory.
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• It’s very useful for learning and utilizing rules of logic, reading and
writing proofs.

• There are several basic problems formulated as conjectures that have
not been solved yet.

2 Mathematical Induction

Definition 2.1 (Well-ordering Principle). Every nonempty set S of nonneg-
ative integers contains a least element. Thus, there is some integer a in S
such that a ≤ b for all b’s in S.

Theorem 2.2 (The Archimedean Property). If a and b are any positive
integers, then there exists a positive integer n such that n · a ≥ b.

Theorem 2.3 (First Principle of Finite (or Mathematical) Induction). Let
S be a set of positive integers with the properties:

1. Integer 1 belongs to S.

2. Whenever integer k is in S, the next integer k + 1 must also be in S.

Then S is the set of all positive integers.

Example 2.1. Show that

1 + 2 + 22 + . . . + 2n−1 = 2n − 1, ∀n ∈ N, n > 0.

Proof. Let S be the set of positive integers n for which our equation holds.
Basis for the induction – For n = 1, 21 − 1 = 2 − 1 = 1, therefore our

equation holds.
Induction hypothesis – We assume that 1 + 2 + 22 + . . . + 2k−1 = 2k − 1

for k ∈ S.
Induction step – For k + 1 we have that
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1 + 2 + 22 + . . . + 2k−1+1

= 1 + 2 + 22 + . . . + 2k−1 + 2k−1+1

= 2k − 1 + 2k

= 2 · 2k − 1

= 2k+1 − 1.

Hence, 1 + 2 + 22 + . . . + 2n − 1,∀n ∈ N, n > 0 holds for n = k + 1 if it
holds for n = k.

By the induction principle, S must be the set of all positive integers, i.e.
S = Z.

Theorem 2.4 (Second Principle of Finite Induction). Let S be the set of
positive integers with the properties

1. 1 belongs to S,

2. If k is a positive integer such that 1, 2, . . . , k belong to S, then k + 1
must also belong to S,

then S is the set of all positive integers, i.e. S = Z.

Mathematical Induction is widely used for definitions or proofs.
For example n! can be defined as

1. 1! = 1

2. n! = n · (n− 1)! for n > 1.
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Example 2.2. Let the sequence defined as a1 = 1, a2 = 3, an = an−1 +an−2.
Show that an < (7/4)n holds for all positive integers n.

Proof. For n = 1, a1 = 1 < 7
4
.

For n = 2, a2 = 3 < (7/4)2 = 49
16

.
Let an < (7/4)n for n = 1, 2, . . . , k − 1.
Then

ak = ak−1 + ak−2 < (
7

4
)k−1 + (

7

4
)k−2

= ak−1 + ak−2 < (
7

4
)k−2(

7

4
+ 1)

= ak−1 + ak−2 < (
7

4
)k−2(11/4) < (

7

4
)k−2(7/4)2

= ak−1 + ak−2 < (
7

4
)k

ak < (
7

4
)k.

By the second principle of finite induction it follows that an < (7/4)n,
∀n ∈ N∗.
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1 The Binomial Theorem

Definition 1.1. The binomial coefficients

(
n

k

)
for any positive integer n

and any integer k with 0 ≤ k ≤ n are defined by(
n

r

)
=

n!

k!(n− k)
.

Example: (
8

3

)
=

8!

3!5!
=

8 · 7 · 6 · 5!

3!5!
=

8 · 7 · 6
3 · 2 · 1

= 56.

Theorem 1.2 (Pascal’s Rule).(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
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Proof.

1

k
+

1

n− k + 1
=

n− k + 1 + k

k(n− k + 1)
=

n + 1

k(n− k + 1)(
n!

(k − 1)!(n− k)!

)(
1

k
+

1

n− k + 1

)
=

n!(n + 1)

(k − 1)!(n− k)!k(n− k + 1)

n!

(k − 1)!(n− k)!k
+

n!

(k − 1)!(n− k)!(n− k + 1)
=

n!(n + 1)

(k − 1)!(n− k)!k(n− k + 1)

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!
=

(n + 1)!

k!(n− k + 1)!

n!

k!(n− k)!
+

n!

(k − 1)!(n− (k − 1))!
=

(n + 1)!

k!(n + 1− k)!(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)

The previous result has triggered the idea of Pascal’s triangle. This is a
triangle formed by numbers. The borders of the triangle have elements equal
to 1. The other elements are equal to the sum of the numbers above them.

Also, the binomial coefficient

(
n

k

)
appears in the n-th row and (k+1)-th

column.
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Theorem 1.3 (The Binomial Theorem).

(a + b)n =

(
n

0

)
an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2 + . . .

+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn

(a + b)n = Σn
k=0

(
n

k

)
an−kbk.

Proof. We use proof by mathematical induction.
For n = 1,

(a + b)1 = Σ1
k=0

(
1

k

)
a1−kbk

=

(
1

0

)
a +

(
1

1

)
b

=
1!

1!0!
a +

1!

0!1!
b

= 1 · a + 1 · b
= a + b.

Let (a + b)m = Σm
k=0

(
m

k

)
am−kbk for m ∈ Z.
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Then

(a + b)m+1 = (a + b)(a + b)m

= (a + b) · Σm
k=0

(
m

k

)
am−kbk

= a · Σm
k=0

(
m

k

)
am−kbk + b · Σm

k=0

(
m

k

)
am−kbk

= Σm
k=0

(
m

k

)
am−k+1bk + Σm

k=0

(
m

k

)
am−kbk+1

= am+1 + Σm
k=1

(
m

k

)
am−k+1bk + bm+1 + Σm−1

k=0

(
m

k

)
am−kbk

j=k+1
= am+1 + Σm

k=1

(
m

k

)
am−k+1bk + bm+1 + Σm

j=1

(
m

j − 1

)
am−j+1bj

= am+1 + Σm
k=1

[(
m

k

)
am−k+1 +

(
m

k − 1

)]
am−k+1bk + bm+1

Pascal′stheorem
= am+1 + Σm

k=1

(
m + 1

k

)
am−k+1bk + bm+1

= Σm+1
k=0

(
m + 1

k

)
a(m+1)−kbk.
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1 The Division Algorithm

Theorem 1.1 (The Division Algorithm). For every two integers m and n >
0, there exist unique integers q and r such that

m = nq + r, where 0 ≤ r < n.

The integer q is called the quotient produced when dividing m by n, and
r is called the remainder of the division with values 0, 1, ...n− 1.

Corollary 1.2. If m and n are integers with n 6= 0, there exist unique
integers q and r for which

m = nq + r, 0 ≤ r < |n|.

For example for m = 22 and n = 5, 22 = 4 · 5 + 2, therefore q = 4 and
r = 2.

Example 1.1. For the following pairs of integers m,n find the quotient and
remainder, when m is divided by n. Then write m = nq + r.

a) m = 59, n = 7
b) m = −58, n = 7
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Answer
a) q = 8, r = 3, 59 = 7 · 8 + 3
b) q = −9, r = 5, −58 = 7 · (−9) + 5.

We observe that we can use the floor function to express the quotient q
and remainder r:

If m = nq + r with 0 ≤ r ≤ n− 1, then
q = bm

n
c and r = m− nbm

n
c

Example 1.2. For the following pairs of integers m,n, find bm
n
c and m −

nbm
n
c.

a) m = 18, n = 7
b) m = −18, n = 7.

Answer
a) bm

n
c = b18/7c = 2, m− nbm

n
c = 18− 7.2 = 4

b) bm
n
c = b−18/7c = −3, m− nbm

n
c = −18− 7.(−3) = 3.

In the previous exercise we evaluated the quotient and remainder of divi-
sions. In computer terminology the quotient may be symbolized by div and
the remainder may be symbolized by mod.

That is, if m = nq + r, then m div n = q and m mod n = r.

Example 1.3. Determine m div n and m mod n for the following pairs of
integers m,n.

a) m = 75, n = 12
b) m = −36, n = 5

Answer
a) 75 div 12 = 6, 75 mod 12 = 3.
b) −36 div 5 = −8, −36 mod 5 = 4.
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Example 1.4. Show that
a(a2 + 2)

3
∈ Z,∀a ∈ Z, a ≥ 1.

Answer
Per the Division Algorithm every a can be written as a = 3q, or a = 3q+1,

a = 3q + 2.

For a = 3q,
3q(9q2 + 2)

3
= 9q3 + 2q ∈ Z.

For a = 3q + 1,

(3q + 1)((3q + 1)2 + 2)

3
=

(3q + 1)(9q2 + 6q + 1 + 2)

3

=
(3q + 1)(9q2 + 6q + 3)

3
=

(3q + 1)(3q2 + 2q + 1)3

3
= (3q + 1)(3q2 + 2q + 1) ∈ Z.

For a = 3q + 2,

(3q + 2)((3q + 2)2 + 2)

3
=

(3q + 2)(9q2 + 12q + 4 + 2)

3

=
(3q + 2)(9q2 + 12q + 6)

3
=

(3q + 2)(3q2 + 4q + 2)3

3
= (3q + 2)(3q2 + 4q + 2) ∈ Z.
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1 Greatest Common Divisor

Definition 1.1. For integers a and b with a 6= 0, we say that a divides b if
b = ac for some integer c. We indicate this by writing a | b. If a | b then a is
called a factor or divisor of b, and b is called a multiple of a. If a does not
divide b, we write a - b.

Therefore an integer n is even if and only if 2 | n.
For any two given integers a and b a | b is a statement. For example 2 | 5

is a false statement, while 2 | 6 is a true statement.

We will prove some divisibility properties of integers next. We note that
to show that a | b then we need to show that there is an integer c such that
b = ac. More frequently used proof methods in such problems are the direct
proof and proof by induction.

Theorem 1.2. Let a, b and c be integers with a 6= 0. If a | b and a | c, then
a | (b+ c).

Proof. Assume that a | b and a | c, that is b = da and c = ea for some
d, e ∈ Z. Then b+ c = da+ ea = (d+ e)a.

Because d+ e ∈ Z it follows that a | b+ c.

Theorem 1.3. Let a and b be integers with a 6= 0. If a | b, then a | bx for
every integer x.
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Proof. Let a | b for a, b ∈ Z and a 6= 0. Then b = ra for some integer r.
We multiply both sides with an integer x and get bx = xra = (xr)a.

Because xr ∈ Z this can be written as a | bx.

Theorem 1.4. Let a and b be integers with a 6= 0. If a | b and a | c, then
a | (bx+ cy) for every two integers x and y.

Proof. This can be considered to be a generalization of the previous two
theorems.

Let a | b and a | c with a 6= 0. It follows that b = ra and c = sa for some
r, s ∈ Z.

Then we have that bx = rax and cy = say for x, y ∈ Z.
Next, we have that bx+ cy = rax+ say → bx+ cy = (rx+ sy)a.
Because rx+ sy is an integer it follows that a | bx+ cy.

Theorem 1.5. Let a and b be integers with a 6= 0 and b 6= 0. If a | b and
b | c, then a | c.

Proof. We assume that for two integers a, b with a 6= 0 and b 6= 0, a | b and
b | c.

This means that b = ra and c = sb for some integers r, s.
Therefore c = sra = (sr)a and because sr is an integer, it follows that

a | c.

Theorem 1.6. Overall, for integers a, b, c

1. a | 0, 1 | a, a | a.

2. a | 1⇔ a = ±1.

3. (a | b) ∧ (c | d)⇒ ac | bd.

4. (a | b) ∧ (b | c)⇒ a | c.

5. (a | b) ∧ (b | a)⇔ a = ±b.

6. (a | b) ∧ (b 6= 0)⇒ |a| ≤ |b|.

7. (a | b) ∧ (a 6= c)⇒ a|ax+ bc for arbitrary x, y ∈ Z.
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Result 1.7. For every nonnegative integer n,
3 | (n3 − n).

Proof. We proceed by induction.

For n = 0, we observe that 03 − 0 = 0, thus 3 | 0.
We assume that 3 | (k3 − k) for k ≥ 0.

We show that 3 | (k + 1)3 − (k + 1).

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= k3 + 3k2 + 2k

= (k3 − k) + 3k2 + 3k

= (k3 − k) + 3(k2 + k).

Because 3 | (k3 − k), we have that k3 − k = 3s for s ∈ Z.
Therefore

(k + 1)3 − (k + 1) = 3s+ 3(k2 + k)

= 3(k2 + k + s).

Based on fundamental properties of integers it follows that k2 + k + s is
an integer, thus 3 | (k + 1)3 − (k + 1).

By the principle of mathematical induction it follows that 3 | (n3−n).
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Result 1.8. For every nonnegative integer n,
4 | (5n − 1).

Proof. We proceed by induction.

For n = 0, we observe that 50 − 1 = 1− 1 = 0 and 4 | 0.
Next, we assume that 4 | (5k − 1) for k ∈ Z with k ≥ 0.

We show that 4 | (5k+1 − 1). We have that 5k+1 − 1 = 5k5− 1. Because
4 | (5k − 1), it follows that 5k − 1 = 4r for some r ∈ Z. Thus 5k = 4r + 1.
Then

5k+1 − 1 = 5k5− 1 = (4r + 1)5− 1

= 20r + 5− 1

= 20r + 4

= 4(5r + 1).

Since 5r + 1 is an integer, it follows that 4 | (5k+1 − 1).

By the principle of mathematical induction it follows that 4 | (5n − 1).
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Theorem 1.9. Let n be an integer. Then 3 | n2 if and only if 3 | n.

Proof. Because the statement is a biconditional we have to prove the follow-
ing two statements

a) if 3 | n then 3 | n2 .
b) if 3 | n2 then 3 | n.

To show a) we assume that 3 | n, therefore n = 3k for some integer k. It
follows that n2 = (3k)2 = 3(3k2). Because 3k2 is an integer, it follows that
3 | n2.

For the second statement we will use proof by contrapositive to show that
if 3 - n then 3 - n2.

Let 3 - n. Then n = 3q + r for some integers q and r.
The remainder r can be 1 or 2.
Case 1: r = 1. Then n = 3q + 1 and

n2 = (3q + 1)2

= 9q2 + 6q + 1

= 3(3q2 + 2q) + 1.

Because 3q2 + 2q is an integer, 3 - n2.
Case 2: r = 2. Then n = 3q + 2 and

n2 = (3q + 2)2

= 9q2 + 12q + 4

= 3(3q2 + 4q + 1) + 1.

Since 3q2 + 4q + 1 is an integer, 3 - n2.
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Definition 1.10 (Common Divisor). Let a, b, d be integers, where a and b
are not both 0 and d 6= 0. The integer d is a common divisor of a and b if
d | a and d | b.

Definition 1.11 (Greatest Common Divisor). For integers a and b not both
0, the greatest common divisor of a and b is the greatest positive integer that
is a common divisor of a and b. The number is denoted by gcd(a, b).

Example 1.1. Determine by observation the greatest common divisor of
each of the following pairs a, b of integers.

(a) a = 15, b = 25, (b) a = 16, b = 80
(c) a = −14, b = −18, (d) a = 0, b = 6

Answer
(a) gcd(15, 25) = 5, (b) gcd(16, 80) = 16
(c) gcd(−14,−18) = 2, (d) gcd(0, 6) = 6

From the previous example we observe the following:

1. gcd(a, b) = gcd(|a|, |b|)

2. gcd(a, 0) = |a|

3. if a, b 6= 0 and a | b, then gcd(a, b) = a.

Theorem 1.12. Given integers a and b not both of which are zero, there
exist integers x and y such that gcd(a, b) = ax+ by.
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Definition 1.13 (Relatively Prime Integers). Two integers a and b not both
0, are relatively prime if gcd(a, b) = 1.

Theorem 1.14. Let a and b be integers not both zero. Then a and b are
relatively prime iff there exist integers x and y such that 1 = ax+ by.

Result 1.15. Every two consecutive positive integers are relatively prime.

Proof. Let n and n+1 be consecutive positive integers and let d = gcd(n, n+
1).

Hence d | n and d | n + 1. This means that n = dr and n + 1 = ds for
some integers d and s.

Based on these two relations, dr+1 = ds→ 1 = ds− dr → 1 = d(s− r).
Because s − r is an integer, d | 1, therefore d ≤ 1. Also, d ≥ 1, so

d = 1.

Corollary 1.16. If a | c and b | c with gcd(a, b) = 1, then ab | c.

Theorem 1.17. Let a and b be integers not both zero. A positive integer d
is gcd(a, b) iff

1. d | a and d | b

2. if c | a and c | b, then c | d.

Theorem 1.18 (Euclid’s Lemma). If a | bc with gcd(a, b) = 1, then a | c.
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1 The Euclidean Algorithm

Theorem 1.1. Let a and b be two positive integers. If b = aq + r for some
integers q and r, then

gcd(a, b) = gcd(r, a).

Let a < b in the previous theorem. If we also assume that q is the quotient
and r is the remainder, when b is divided by a, then

gcd(a, b) = gcd(r, a), with 0 ≤ r < b.
Now if r = 0 then gcd(a, b) = gcd(0, a) = a.
If r 6= 0, then we continue and divide a by r with remainder r2, so

gcd(r, a) = gcd(r2, r). We continue this until we reach a remainder equal to
0.

gcd(a, b) = gcd(r, a) = gcd(r2, r) = gcd(r3, r2) = ... = gcd(0, rk) = rk.
Therefore, the greatest common divisor of a and b is the last nonzero

remainder obtained when the sequence of divisions described above is per-
formed. This method for determining gcd(a, b) is called the Euclidean algo-
rithm.

Example 1.1. Use the Euclidean algorithm to find gcd(384, 477).

Answer We recursively apply the Euclidean algorithm to the remainder
of each division as follows.
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477 mod 384 = 93

384 mod 93 = 12

93 mod 12 = 9

12 mod 9 = 3

9 mod 3 = 0.

Therefore gcd(384, 477) = 3.
Represent 3 as a linear combination of 384 and 477.

3 = 12− 9

= 12− (93− 7 · 12)

= −93 + 8 · 12

= −93 + (8 · (384− 4 · 93))

= −93 + 8 · 384− 32 · 93

= 8 · 384− 33 · 93

= 8 · 384− 33 · (477− 384)

= 41 · 384− 33 · 477

Theorem 1.2. If k > 0, then gcd(ka, kb) = k · gcd(a, b).

Proof. gcd(ka, kb) is the smallest integer of the form kax + kby, which is
k · (ax + by), hence it is k · gcd(a, b).

Example 1.2. Find gcd(428, 14).

Answer
Based on previous theorem, gcd(428, 14) = 2 · gcd(214, 7).
We now use the Euclidean algorithm to find gcd(214, 7):

214 = 30 · 7 + 4

7 = 1 · 4 + 3

4 = 1 · 3 + 1

3 = 3 · 1

∴ gcd(214, 7) = 1 ∴ gcd(428, 14) = 2 · gcd(214, 7) = 2.
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2 Least Common Multiples

Definition 2.1. For two positive integers a and b, an integer n is a common
multiple of a and b if n is a multiple of a and b. The smallest positive integer
that is a common multiple of a and b is the least common multiple of a and
b. The number is denoted by lcm(a, b) and has the following properties:

1. a | n and b | n.

2. If a | c and b | c, then c ≥ n.

Example 2.1. Determine by observation the least common multiple of a
and b.

(a) a = 6 b = 9, (b) a = 10 b = 10,
(c) a = 5 b = 7, (d) a = 15 b = 30,

Answer
(a) lcm(6, 9) = 18, (b) lcm(10, 10) = 10
(c) lcm(5, 7) = 35, (d) lcm(15, 30) = 30

Theorem 2.2. For every two positive integers a and b,
ab = gcd(a, b)lcm(a, b)

Example 2.2. Find lcm(92, 16) using Theorem 2.2.

Answer First, find gcd(92, 16):

92 = 5 · 16 + 12

16 = 1 · 12 + 4

12 = 3 · 4

Therefore gcd(92, 16) = 4. Because of Theorem 2.2, gcd(92, 16)·lcm(92, 16) =

92 · 16 ∴ lcm(92, 16) =
92 · 16

gcd(92, 16)
=

92 · 16

4
= 92 · 4 = 368.
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3 Linear Combinations of Integers

Definition 3.1. Let a and b be two integers. An integer of the form ax+ by,
where x and y are integers, is a linear combination of a and b.

Theorem 3.2. Let a and b be integers that are not both 0. Then gcd(a, b) is
the smallest positive integer that is a linear combination of a and b.

Example 3.1. For each of the following pairs of integers, express d =
gcd(a, b) as a linear combination of a and b.

(a) a = 10 b = 14, (b) a = 12 b = 12
(c) a = 18 b = 30, (d) a = 25 b = 27

Answer
(a) gcd(10, 14) = 2 = 10 · 3 + 14 · (−2)
(b) gcd(12, 12) = 12 = 12 · 1 + 12 · 0
(c) gcd(18, 30) = 6 = 18 · 2 + 30 · (−1)
(d) gcd(25, 27) = 1 = 25 · 13 + 27 · (−12)

We can solve (d) using the Euclidean algorithm
27 = 25 · 1 + 2→ 2 = 27− 25 · 1
25 = 12 · 2 + 1→ 1 = 25− 12 · 2
Therefore

1 = 25− 12 · (27− 25 · 1)

= 25− 12 · 27 + 12 · 25

= 13 · 25− 12 · 27

Corollary 3.3. Let a and b be integers that are not both 0 and let d =
gcd(a, b). If n is an integer that is a common divisor of a and b then n | d.

Proof. Based on theorem 3.2 d = ax + by for some integers x, y.
Also n | a and n | b, therefore a = nq and b = nr for some integers q and

r.
So d = ax + by = nqx + nry = n(qx + ry).
Because qx + ry is an integer, n | d.
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Corollary 3.4. Two integers a and b are relatively prime if and only if 1 is a
linear combination of a and b; that is, gcd(a, b) = 1 if and only if ax+ by = 1
for some integers x and y.

Example 3.2. Use Corollary 3.4 to show that the following pairs are rela-
tively prime.

(a) every two consecutive integers
(b) every two odd integers that differ by 2.

Answer
(a) Let n ∈ Z and the consecutive integer n + 1.
Because (−1) · n + n + 1 = 1.
By the Corollary 3.4 it follows that gcd(n, n + 1) = 1 and m− n = 2.

(b) Let an odd integer m such that m = 2k + 1 and an odd integer
n = m + 2 = 2k + 1 + 2 = 2k + 3 with k ∈ Z.

Since 1 = (2k + 1)(k + 1) + (2k + 3)(−k), by the Corollary 3.4 it follows
that gcd(m,n) = 1.

Theorem 3.5. Let a, b and c be integers with a 6= 0. If a | bc and gcd(a, b) =
1, then a | c.

Proof. Let a | bc. Then bc = qa for some integer q.
Because gcd(a, b) = 1, by the Corollary 3.4 it follows that ax+ by = 1 for

some integers a and b.
Therefore c = c · 1 = c(ax + by) = cax + cby = cax + qay = a(cx + qy).
Because cx + qy is an integer, it follows that a | c.

Corollary 3.6. Let b and c be integers and let p be a prime. If p | bc, then
either p | b or p | c.

Theorem 3.7. Let a1, a2, ..., an be n ≥ 2 integers and let p be a prime. If
p | a1a2...an,

then p | ai for some integer i with 1 ≤ i ≤ n.

Theorem 3.8 (The Fundamental Theorem of Arithmetic). Every integer
n ≥ 2 is either prime or can be expressed as a product of (not necessarily
distinct) primes, that is,

n = p1p2...pk,
where p1, p2, ..., pk are primes. This factorization is unique except possibly

for the order in which the primes appear.
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1 The Diophantine Equation

We use the term ’Diophantine Equation’ to refer to an equation to be solved
in the integer space.

The simplest of these equations is a linear equation in two unknowns,
that is ax + by = c, where a, b, c are integers and a, b are not both zero.

Theorem 1.1. The linear Diophantine equation ax + by = c has a solution
iff d | c, where d = gcd(a, b). If x0, y0 is one solution of the equation, then
all other solutions are given by:

x = x0 +

(
b

d

)
t, y = y0 −

(a
d

)
t

where t is an arbitrary integer.

1



Example 1.1. Consider the linear Diophantine equation

172x + 20y = 1000.

We first find the gcd(172, 20):

172 = 8 · 20 + 12

20 = 1 · 12 + 8

12 = 1 · 8 + 4

8 = 2 · 4

Therefore gcd(172, 20) = 4.
Because gcd(172, 20) | 1000, the Diophantine equation has a solution.
We next find gcd(172, 20) as a linear comination of 172 and 20.

4 = 12− 8

4 = 12− (20− 12)

4 = 2 · 12− 20

4 = 2 · (172− 8 · 20)− 20

4 = 2 · 172− 17 · 20

Then

1000 = 250 · 4 = 250 · (2 · 172− 17 · 20)

1000 = 500 · 172− 4250 · 20

Hence, one solution is x0 = 500, y0 = −4250.
According to the above theorem, the set of solutions is given by:

x = 500 + 5t y = −4250− 43t.

To find positive solutions we further require that

500 + 5t > 0, −4250− 43t > 0

2



t > −100, t <
−4250

43

−100 < t < −98
36

43

∴ t = −99 for positive solution.

∴ x = 5, y = 7.

Corollary 1.2. If gcd(a, b) = 1 and if x0, y0 is a particular solution of the
linear Diophantine equation ax + by = c, then all solutions are given by

x = x0 + bt, y = y0 − at.

for integral values of t.

For example, the equation 5x + 22y = 18, where gcd(5, 22) = 1 has a
solution x0 = 8, y0 = −1. Then the set of solutions is given by

x = 8 + 22t, y = −1− 5t.

for an arbitrary integer t.
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1 Primes

Definition 1.1. A prime is an integer p ≥ 2 whose only positive integer
divisors are 1 and p.

Some prime numbers are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

Theorem 1.2. If p is a prime and p | ab, then either p | a or p | b.

Proof. The strategy is to divide the proof into the cases p | a and p - a.

Corollary 1.3. If p is a prime and p | a1, a2, . . . , an, then p | ak for some
1 ≤ k ≤ n, k ∈ Z.

Proof. The strategy is to utilize mathematical induction and the previous
result.

Corollary 1.4. If p, q1, q2, . . . , qn are all primes and p | q1, q2, . . . , qn, then
p = qk for some 1 ≤ k ≤ n, k ∈ Z.

Proof. The strategy is to utilize previous corollary and the definition of prime
numbers.

1



1.1 The Fundamental Theorem of Arithmetic

Theorem 1.5 (The Fundamental Theorem of Arithmetic). Every integer
n ≥ 2 is either prime or can be expressed as a product of (not necessarily
distinct) primes, that is,

n = p1p2...pk,
where p1, p2, ..., pk are primes. This fatorization is unique except possibly

for the order in which the primes appear.

Example 1.1.

In some cases we can check if a prime p divides an integer n.

• 2 divides n only if n is even. The last digit of an even number must be
even.

• 4 = 22 divides n if the last two digits of n are divided by 4. For example,
4 | 6912 because 4 | 12.

• 3 divides an integer n if and only if 3 divides the sum of the digits of
n. For example 3 | 324 because 3 | (3 + 2 + 4).

• 9 = 32 divides n if and only if 9 divides the sum of the digits of n.

• 5 divides n if the last digit of n is 5 or 0.

• There is a method for finding if an integer n can be divided by 11. Let a
the sum of alternating digits of n, and b the sum of the remaining digits.
Then 11 | n if and only if 11 | (a − b). For example, 11 | 9, 775, 887
because 11 | ((9 + 7 + 8 + 7)− (7 + 5 + 8)), 11 | (31− 20).

2



Corollary 1.6. Any positive integer n > 1 can be written uniquely in a
canonical form

n = p1
k1p2

k2 . . . pr
kr

where, for i = 1, 2, . . . , r ki ∈ Z and pi is a prime with p1 < p2 < . . . < pr.

Example 1.2. Canonical forms:

360 = 23 · 33 · 5

17460 = 23 · 32 · 5 · 72

Note: Prime factorizations can be used to find the gcd of two numbers.

Theorem 1.7 (Attributed to Pythagoras). The number
√

2 is irrational.

Proof. Proof strategy: use proof by contradiction by assuming that
√

2 is
rational.
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1 The Sieve of Eratosthenes

We can determine if an integer n is prime or composite can be done by
checking if n can be divided by all smaller positive integers.

This process can become very tedious for large integers.

We can reduce the workload by use of the following result:

Corollary 1.1. If n is a composite number, then n has a prime factor p such
that p ≤

√
n.

Proof. Let n be a composite number. Then by definition n = ab for some
integers a, b with 1 < a < n and 1 < b < n. Suppose that a < b. Then
a2 < ab = n, thus a <

√
n. Because a ≥ 2 according to the Fundamental

Theorem of Arithmetic there is some prime number p such that p | a and
so p ≤ a <

√
n. According to previously proved theorem p | ab, that is

p | n.

We can use this corollary to find out if an integer is a prime.

Example 1.1. Show that 103 is a prime.

Answer We check if there are any primes lower than
√

103 that divide
103. We observe that 10 <

√
103 < 11, so we check the primes 2, 3, 5, 7. We

observe that none of them is a factor of 103, therefore 103 is a prime number.

1



Example 1.2. Determine if 509 is a prime.

Answer We have that 22 <
√

509 < 23. We find primes smaller than 22.
These are 2, 3, 7, 9, 11, 13, 17, 19.

None of these numbers is a divisor of 509.
Therefore 509 is a prime integer.

The Sieve of Eratosthenes is a smart technique for finding primes
smaller than a given integer n. We first write down an ordered list of integers
2 to n. We then eliminate all multiples 2p, 3p, . . . of primes p ≤

√
n . The

remaining integers, that is the numbers that do not fall through the sieve,
are primes.

1.1 There are Infinitely Many Primes

Theorem 1.2. There are infinitely many primes.

Proof. We will use proof by contradiction.
We assume that there is a finite number of primes, p1, p2, ..., pk.
Let n = p1p2...pk + 1. Because n is greater than each prime, n must be

composite. By the fundamental theorem of arithmetic, at least one prime
must divide n say pj | n. Therefore n = pjr for some integer r. That means

p1p2...pk + 1 = pjr

p1p2...pj−1pjpj+1...pk + 1 = pjr

1 = pjr − p1p2...pj−1pjpj+1...pk

1 = pj(r − p1p2...pj−1pj+1...pk)

We observe that r − p1p2...pj−1pj+1...pk + 1 is an integer, hence pj | 1.
This is a contradiction because a prime number is by definition greater than
2.

Theorem 1.3. If pn is the n− th prime number, then pn ≤ 22n−1
.

Proof. Strategy: use Mathematical Induction.

2



Corollary 1.4. For n ≥ 1, ∃n+ 1 primes less than 22n

Proof. Using above theorem it follows that p1, p2, . . . pn+1 are all smaller than
or equal to 22n .

Theorem 1.5 (The Prime Number Theorem). The number π(n) is approx-
imately equal to n/ lnn. More specifically

limn→∞
π(n)
n/ lnn

= 1.

Special forms of primes are numbers written as a string of 1s, for example
11, 111, 11111, that we call repunits and symbolize by Rn, where n is the

number of digits. For these numbers we have that Rn =
10n − 1

9
.

3



1.2 Unsolved Problems Involving Primes

1. Two positive integers p and p + 2 are called twin primes if they are
both primes, for example, 5 and 7 are twin primes. The two primes
conjecture is that there are infinitely many twin primes.

2. Goldbach’s Conjecture: Every even integer that is 4 or more can be
expressed by the sum of two primes.

3. Observe that the following Fibonacci numbers are primes: 2, 3, 5, 13.
Are there infinitely many prime Fibonacci numbers?

4
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1 Congruence

In several occasions we are interested in the parity of integers. We noticed
that two integers are both even if both have a remainder 0 when divided by
2. Also, two integers are odd if they both have a remainder 1 when divided
by 2.

In this section we deal with numbers that have the same remainder when
divided by an integer n with n ≥ 2. We begin with a definition of congruence
and reach this observation.

Definition 1.1. For integers a, b and n ≥ 2, the integer a is congruent to b
modulo n if n | (a− b).

To show that a is congruent to b modulo n we use the notation a ≡ b(
mod n). To show that a is not congruent to b modulo n we write a 6≡ b(
mod n).

Example 1.1. We observe that
47 ≡ 5( mod 7), because 7 | (47− 5).
93 ≡ 84( mod 9), because 9 | (93− 84).
58 6≡ 47( mod 6), because 6 | (58− 47).

1



Theorem 1.2. Let a, b and n ≥ 2 be integers. Then a ≡ b( mod n) if and
only if a = b + kn for some integer k.

Proof. This is a biconditional so we need to prove two statements.
We first show that if a ≡ b( mod n), then a = b+ kn for some integer k.
Let a ≡ b( mod n) for a, b, n ∈ Z with n ≥ 2.
Then according to the definition n | (a− b).
Hence, a− b = nk for some integer k and a = b + nk.

Next, we show that if a = b + kn, then a ≡ b( mod n).
We assume that a = b + kn for an integer k.
Then a− b = kn, therefore n | (a− b).
By definition this means that a ≡ b( mod n).

2



Theorem 1.3. Let a, b and n ≥ 2 be integers. Then a ≡ b( mod n) if and
only if a and b have the same remainder when divided by n.

Proof. This is a biconditional so we need to prove two statements.
First, we show that if a and b have the same remainder when divided by

n, then a ≡ b( mod n).
Let a and b have the same remainder r > 0, r ∈ Z when divided by n.
Therefore, a = nk1 + r and b = nk2 + r, for k1, k2 ∈ Z.
We have that a−b = nk1+r−(nk2+r) = nk1+r−nk2−r = nk1−nk2 =

n(k1 − k2).
Because k1 − k2 is an integer, n | (a− b).

We also need to show that if a ≡ b( mod n), then a and b have the same
remainder when divided by n.

We use proof by contrapositive.
We assume that a and b have different remainders when divided by n.
Hence, a = k1n + r1 and b = k2n + r2 with r1 6= r2.
We will show that a 6≡ b( mod n).
Then a−b = k1n+r1−(k2n+r2) = k1n+r1−k2n−r2 = (k1−k2)n+(r1−r2).
Because r1 6= r2 → r1 − r2 6= 0, therefore n - (a − b). This means that

a 6≡ b( mod n).

Corollary 1.4. Let a, b and n ≥ 2 be integers. Then a ≡ b( mod n) if and
only if

a mod n = b mod n.

Example 1.2. Use Corollary 1.4 to determine whether the following pairs
of integers a, b for integer n ≥ 2 are a ≡ b( mod n).

(a) a = 31, b = 47, n = 3.
(b) a = 35, b = 59, n = 6.

Answer
(a) We observe that 31 mod 3 = 1 and 47 mod 3 = 2. Because 31

mod 3 6= 47 mod 3, it follows by Corollary 1.4 that 31 6≡ 47( mod 3).
(b) We observe that 35 mod 6 = 5 and 59 mod 6 = 5. Because 35

mod 6 = 59 mod 6, it follows by Corollary 1.4 that 35 ≡ 59( mod 6).

3



Congruence can be considered as a new form of equality as seen below.

Theorem 1.5. Let n > 1 be fixed and a, b, c, d be arbitrary integers. We
have that:

1. a ≡ a( mod n).

2. If b ≡ a( mod n), then a ≡ b( mod n).

3. If a ≡ b( mod n) and b ≡ d( mod n), then a + c ≡ (b + d)( mod n)
and ac ≡ (bd)( mod n).

4. If a ≡ b( mod n) and b ≡ c( mod n), then a ≡ c( mod n).

5. If a ≡ b( mod n), then ac ≡ bc( mod n) and (a + c) ≡ (b + c)(
mod n).

6. If a ≡ b( mod n) and ak ≡ bk( mod n) for k ∈ Z, k > 0.

Theorem 1.6. If ca ≡ cb( mod n), then a ≡ b( mod n/d), where d =
gcd(c, n).

Proof. Proof strategy: Let n | c(a− b). Use gcd(c, n) properties.

Corollary 1.7. If ca ≡ cb( mod n) and gcd(c, n) = 1, then a ≡ b( mod n).

Corollary 1.8. If ca ≡ cb( mod n) and p - c, where p is prime, then a ≡ b(
mod p).

Proof. Because p is prime and p - c, we have that gcd(c, p) = 1. Result
follows from previous theorem.
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1 Binary and Decimal Representations of In-

tegers

Result 1.1. Given an integer b > 1, any positive integer N can be written
uniquely in terms of powers of b as N = amb

m+am−1b
m−1+. . .+a2b

2+a1b+a0
where the coefficients ak can take on the values 0, 1, 2, . . . , b− 1.

Proof. Proof strategy: use the Division algorithm recursively to show the
polynomial representation. Then use proof by contradiction to show unique-
ness.

Hence, any integer N can be uniquely represented by the coefficients ai
and base integer b, i = 0, 1, . . . ,m : N = amb

m + am−1b
m−1 + . . . + a2b

2 +
a1b + a0.

A simpler representation is (amam−1 . . . a0)b.
This is called base b place-value notation for N .
For b = 2, we have the binary system.
For b = 10, we have the decimal system.

1



Example 1.1.

(121)10 = 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

= (1111001)2
(10101)2 = 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 16 + 4 + 1 = 21.

Binary representation is more suitable for electronic devices, based on
closed or open switch.

The binary exponential algorithm: to calculate the value ak( mod n) for
large k we follow these steps:

1. write exponent in binary form k = (amam−1 . . . a1a0)2

2. calculate a2j( mod n), corresponding to 1s in binary form

3. multiply previous terms together and get final result.

Example 1.2. Calculate 5113( mod 131).

1. Binary form of exponent

113 = 64 + 32 + 16 + 1 = (1110001)2

2. Obtain 52j( mod 131)

51 ≡ 5( mod 131)

52 ≡ 25( mod 131)

54 ≡ 252( mod 131) ≡ 101( mod 131)

58 ≡ 1012( mod 131) ≡ 114( mod 131)

516 ≡ 1142( mod 131) ≡ 27( mod 131)

532 ≡ 272( mod 131) ≡ 74( mod 131)

564 ≡ 742( mod 131) ≡ 105( mod 131)

3. 5113 = 564+32+16+1 = 56453251651 ≡ 105 · 74 · 27 · 5 ≡ 33( mod 131).

2



Theorem 1.2. Let P (x) = Σm
k=0ckx

k be a polynomial function of x with
integral coefficients ck. If a ≡ b( mod n), then P (a) = P (b)( mod n).

Definition 1.3. If P (x) is a polynomial with integral coefficients, we say that
a is a solution of the congruence P (x) ≡ 0( mod n) if P (a) ≡ 0( mod n).

Theorem 1.4. If a is a solution of P (x) ≡ 0( mod n) and a ≡ b( mod n),
then b is also a solution.

Proof. From last theorem P (a) = P (b)( mod n) ∴ P (b) = P (a)( mod n).
Because P (a) ≡ 0( mod n) and P (b) = P (a)( mod n), P (b) ≡ 0(

mod n).

Theorem 1.5. Let N = am10m +am−110m−1 + . . .+a110+a0 be the decimal
expression of the integer N , N > 0, 0 ≤ ak < 10 and let S = a0+a1+. . .+am.
Then 9 | N ⇐⇒ 9 | S.

Proof. Let P (x) = Σm
k=0ak · xk with integral coefficients.

Then P (10) = N and P (1) = S.
We have that 10 ≡ 1( mod 9) and 1 ≡ 1( mod 9).
Previous theorem ∴ P (10) ≡ P (1)( mod 9) ∴ N ≡ S( mod 9).
Let 9 | N ∴ N ≡ 0( mod 9) ∴ S ≡ 0( mod 9) ∴ 9 | S.
Let 9 | S ∴ S ≡ 0( mod 9) ∴ N ≡ ( mod 9) ∴ 9 | N .
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Theorem 1.6. Let N = am10m +am−110m−1 + . . .+a110+a0 be the decimal
expression of the integer N , N > 0, 0 ≤ ak < 10 and let S = a0 − a1 + . . . +
(−1)mam. Then 11 | N ⇐⇒ 11 | S.

Proof. Proof strategy: we let P (x) = Σm
k=0ak · xk with integral coefficients

and observe that 10 ≡ (−1)( mod 11). Then continue proof as in previous
theorem.
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1 Linear Congruences and the Chinese Re-

mainder Theorem

An equation of the form ax ≡ ( mod n) is called a linear congruence. A
solution of this equation type is an integer x0 for which ax0 ≡ ( mod n).
We have that ax0 ≡ ( mod n)↔ axo − b = ny0 for some integer y0.

So our problem becomes that of finding all solutions of the linear Dio-
phantine equation

ax0 − ny0 = b.

Theorem 1.1. The linear congruence ax ≡ ( mod n) has a solution iff
d | b, where d = gcd(a, n). If d | b the equation has d mutually incongruent
solutions modulo n.

Proof. Proof strategy: Use theorem for solutions of linear Diophantine equa-
tions. Use proof by contradiction to show that solutions are incongruent
modulo n.

If x0 is any solution of ax ≡ b( mod n) then the d = gcd(a, n) solutions
are given by x0, x0 + n

d
, x0 + 2n

d
, . . . , x0 + (d− 1)n

d
.

1



Corollary 1.2. If gcd(a, n) = 1, then the linear congruence ax ≡ b( mod n)
has a unique solution modulo n.

Example 1.1. Find the solutions, if any, of 18x ≡ 30( mod 42).
We have that gcd(18, 42) = 6.
Then 6 | 30, hence we have 6 solutions given by

x ≡xo +
42

6
· t, t = 0, . . . , 5

≡xo + 7 · t.
One solution is x = 4, hence

x ≡4, 11, 18, 25, 32, 39, 46( mod 42).

Example 1.2. Solve the linear equation

9x ≡ 21( mod 30).

First, d = gcd(9, 30) = 3.
Because 3 | 21 we have 3 solutions.
We have to solve the equivalent Diophantine equation 9x−30y = 21. We

use the Euclidean algorithm to express 3 = 9 · k + 30 · j.

30 = 3 · 9 + 3

9 = 3 · 3 + 0.

Next we find a solution to the Diophantine equation.

3 = 30− 3 · 9
21 = 30 · 7 + 9 · (−21)

21 = 9 · (−21) + (−30) · (−7).

Hence, x0 = −21 and y0 = −7.
The solutions are given by

x = −21 +
30

3
t, t = 0, 1, 2

= −21 + 10t.

2



These integers are incongruent modulo 30 and the incongruent solutions
are

x ≡ −21( mod 30)

x ≡ −11( mod 30)

x ≡ −1( mod 30),

which can be written as x ≡ 9, 19, 29( mod 30).

Theorem 1.3 (Chinese Remainder Theorem). Let n1, n2, n3, . . . , nr be pos-
itive integers, such that gcd(ni, nj) = 1 for i 6= j.

Then the system of linear congruences

x ≡ a1( mod n1)

x ≡ a2( mod n2)

...

x ≡ ar( mod nr)

has a simultaneous solution, which is unique modulo the integer n1n2 . . . nr.

Proof. Proof strategy: Compute Nk = n
nk

= n1n2 . . . nk−1nk+1 . . . nr. From

gcd(Nk, nk) = 1, define and solve Nkx ≡ 1( mod nk). Show that x̄ =
a1N1x1 + a2N2x2 + . . . + arNrxr is the solution of above system.

Example 1.3. The problem posed by Sun-Tsu corresponds to the system of
congruences:

x ≡ 2( mod 3), x ≡ 3( mod 5), x ≡ 2( mod 7).

We have that n = 3 · 5 · 7 = 105 and

N1 =
n

3
= 35, N2 =

n

5
= 21, N3 =

n

3
= 15.

The linear congruences:

3



35x ≡ 1( mod 3), 21x ≡ 1( mod 5), 15x ≡ 1( mod 7),

are satisfied by x1 = 2, x2 = 1, x3 = 1.
The solution is

x = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1
= 140 + 63 + 30

= 233.

Modulo 105 we get x = 233 ≡ 23( mod 105).

Example 1.4. Solve the linear congruence:

17x ≡ 9( mod 276).

Because 276 = 3 · 4 · 23, the equivalent system is

17x ≡ 9( mod 3), 17x ≡ 9( mod 4), 17x ≡ 9( mod 23),

or,

x ≡ 0( mod 3), x ≡ 1( mod 4), 17x ≡ 9( mod 23).

We have that

x ≡ 0( mod 3) ∴ x = 3k for k ∈ Z.

Then

3k ≡ 1( mod 4) ∴ k ≡ 9k ≡ 3( mod 4), where k = 3 + 4j, j ∈ Z.

Also
x = 3(3 + 4j) = 9 + 12j.

Based on the previous results we have that

17(9 + 12j) ≡ 9( mod 23) ∴ 153 + 204j ≡ 9( mod 23)

∴ 204j ≡ −144( mod 23) ∴ 3j ≡ 6( mod 23) ∴ j ≡ 2( mod 23)

∴ j = 2 + 23t, t ∈ Z.

Finally

x = 9 + 12(2 + 23t) = 9 + 24 + 276t = 33 + 276t.

That is, x ≡ 33( mod 276) is a solution to the system of congruences
and the original linear congruence.
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1 Fermat’s Little Theorem and Pseudoprimes

Definition 1.1 (Fermat’s Little Theorem). Let p be a prime and let p - a.
Then ap−1 ≡ 1( mod p).

Proof. Let a prime p and let p - a. We take the first p − 1 multiples of a:
a, 2a, . . . , (p− 1)a.

These numbers are not congruent modulo p to each other, nor is any
congruent to 0.

Indeed, let ra ≡ sa( mod p) for some 0 < s ≤ r < p with s, r ∈ Z.
Then r ≡ s( mod p) ∴ p | r − s.
This is not possible because both r and s are smaller than p, hence r−s <

p.
Therefore the p−1 multiples of a must be congruent modulo p to 1, 2, 3, . . . , p−

1 in some order.
After multiplying them all we get

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1)( mod p)

ap−1 · (p− 1)! ≡ (p− 1)!( mod p)

ap−1 ≡ 1( mod p).

1



Corollary 1.2. If p is a prime, then ap ≡ a( mod p),∀a ∈ Z.

Proof. Case 1: Let p | a. Then

a ≡ 0( mod p) ∴ ap ≡ 0 ≡ a( mod p).

Case 2: Let p - a. Because of Fermat’s Little Theorem,

ap−1 ≡ 1( mod p) ∴ ap ≡ a( mod p).

Applications of Fermat’s Theorem

1. We can verify a congruence.

For example, let’s find 538 ≡ 4( mod 11). Then:

510 ≡ 1( mod 11) ∴ (510)
3 ≡ 1( mod 11)

∴ 538 ≡ (530)58 ≡ 58 ≡ (52)
4 ≡ 254 ≡ 34 ≡ 81 ≡ 4( mod 81).

2. We can use the previous corollary to show that a divisor n is not prime
when an 6≡ a( mod n).

For example, let’s find if n = 117 is prime.

Let a = 2. We will see if 2n ≡ 2( mod n) or not.

We observe that

2117 = 27·16+5 = (27)
16

25 = 1281625.

Then
2117 ≡ 1281625 ≡ 111625 ≡ (112)

8
25

≡ 121825 ≡ 4825 ≡ 221

≡ (27)
3 ≡ 1283 ≡ 113 ≡ 121 · 11 ≡ 4 · 11 ≡ 44( mod 117).

Because
2117 ≡ 44( mod 117)

and
2117 6≡ 2( mod 117),

it follows that 117 is a composite. Actually 117 = 9 · 13.
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Lemma 1.3. If p and q are distinct primes with ap ≡ a( mod q) and aq ≡ a(
mod p) then apq ≡ a( mod pq).

We should also note that the converse of Fermat’s Little Theorem is not
necessarily true.

For example, we can show that 2340 ≡ ( mod 341), but 341 = 11 · 31.
The integers of the form 2n − 2 have received particular interest.

Definition 1.4. A composite integer n is called pseudoprime if n | 2n − 2.

Theorem 1.5. If n is an odd pseudoprime, then Mn = 2n − 1 is a larger
pseudoprime.

Proof. Proof strategy: First, show Mn is composite, then show Mn | 2MN−2.
Let n be a pseudoprime. Then n = rs for some 0 < r ≤ s < n. Then by

Sec. 2.3, Prob. 21, 2r − 1 | 2n − 1 ∴ 2r − 1 |Mn.
Because r is not necessarily equal to n, Mn is composite. Then we have

that
2n ≡ s( mod n) ∴ 2n − 2 = kn,

for some k ∈ Z.
Then 2Mn−1 = 22n−2 = 2kn.
So 2Mn−1 − 1 = 2kn − 1 = (2n − 1)(2n(k−1) + 2n(k−2) + . . . + 2n + 1).
Therefore Mn | 2Mn−1−1 ∴ Mn | 2Mn−2, hence Mn is a pseudoprime.
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Definition 1.6. A composite integer n for which n | an − a is called a
pseudoprime to the base a.

There are also integers that are pseudoprimes to every base a.

Definition 1.7. A composite integer n for which an−1 ≡ 1( mod n) to every
base a with gcd(a, n) = 1 is called an absolute pseudoprime.

We can show that that an absolute pseudoprime is square-free, i.e. it
cannot be expressed as the square of an integer.

Theorem 1.8. Let n be a composite square-free integer, n = p1p2 . . . pr with
ri distinct primes. If pi − 1 | n − 1 for i = 1, 2, . . . , r, then n is an absolute
pseudoprime.
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1 The Sum and Number of Divisors

Any function whose domain is the set of positive integers is called a number-
theoretic or arithmetic function.

Two popular and easy to handle number-theoretic functions are the func-
tions τ and σ.

Definition 1.1. Given a positive integer n, let τ(n) denote the number of
positive divisors of n and σ(n) denote the sum of the positive divisors of n.

For example, let n = 12. The positive divisors of 12 are 1, 2, 3, 4, 6, 12.
Then

τ(12) = 6

and
σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.

We can show that τ(n) = 2 iff n is a prime number, and σ(n) = n+ 1 iff
n is a prime number.

1



Related notations:
Σd|nf(d): sum of f(d) as d runs over the positive divisors of n.
For example: Σd|8f(d) = f(1) + f(2) + f(4) + f(8).
Based on the previous notations we can write:

τ(n) = Σd|n1

σ(n) = Σd|nd.

Theorem 1.2. If n = pk11 p
k2
2 . . . pkrr is the prime factorization of n > 1, then

the positive divisors of n are precisely those integers d of the form

d = pa11 p
a2
2 . . . parr

where 0 ≤ ai ≤ ki(i = 1, 2, . . . , r).

Theorem 1.3. If n = pk11 p
k2
2 . . . pkrr is the prime factorization of n > 1, then

τ(n) = (k1 + 1)(k2 + 1) . . . (kr + 1)

σ(n) =
pk1+1
1 − 1

p1 − 1

pk2+1
2 − 1

p2 − 1
. . .

pkr+1
1 − 1

pr − 1
.

Proof. Strategy: Assume a positive divisor and its prime factorization. For
τ(n), calculate all combinations of prime factors using the previous theorem.
For σ(n) multiply the binomial expansion of all prime factors to generate
the sum of all divisors according to previous theorem. Then use algebraic
identity to reach the product of fractions.

Back to notation discussion, we usually denote products by Π.
Hence,

Π1≤d≤3f(d) = f(1) · f(2) · f(3)

Πd|4f(d) = f(1) · f(2) · f(4)

Πd|4,dprimef(d) = f(1) · f(2).

2



Example 1.1. Consider the number 180 = 22 · 32 · 5. Then

τ(180) = (2 + 1) · (2 + 1) · (1 + 1) = 18.

The divisors will have the form

2a1 · 3a2 · 5a3 , with a1 = 0, 1, 2; a2 = 0, 1, 2; a1 = 0, 1.

Also,

σ(180) =
22+1 − 1

2− 1
· 32+1 − 1

3− 1
· 51+1 − 1

5− 1

=
7

1
· 26

2
· 24

4
= 7 · 13 · 6
= 546.

A useful property of function τ is that the product of the positive divisors
of an integer n > 1 is equal to nτ(n)/2, or equivalently

nτ(n)/2 = Πd|nd.

Definition 1.4. A number-theoretic function f is called multiplicative if

f(mn) = f(m) · f(n).

whenever gcd(m,n) = 1.

Interesting notes

• The functions f(n) = 1 and f(n) = n ∀n ≥ 1 are multiplicative.

• We can use induction to show that

f(n1n2 . . . nr) = f(n1)f(n2) . . . f(nr).

• Let n ∈ Z. Given the canonical form n = pk11 p
k2
2 · · · pkrr and a multi-

plicative function f , it follows that

f(n) = f(pk11 )f(pk22 ) · f(pkrr ).

3



• Let f be a multiplicative function. Because f(n) = f(n·1) = f(n)·f(1),
it follows that f(1) = 1 for any multiplicative function not identically
zero.

Theorem 1.5. The functions τ and σ are both multiplicative functions.

Proof. Strategy: We assume two relatively prime integers m,n and their
prime factorizations. Take their product, then use previous theorem to
calculate τ(m · n) and σ(m · n). Then show τ(m · n) = τ(m) · τ(n) and
σ(m · n) = σ(m) · σ(n).

Lemma 1.6. If gcd(m,n) = 1, then the set of positive divisors of mn consists
of all products d1d2, with d1 | m, d2 | n, and gcd(d1, d2) = 1. Furthermore
these products are all distinct.

Theorem 1.7. If f is a multiplicative function and F is defined by

F (n) = Σd|nf(d)

then F is also multiplicative.

Proof. Strategy: We assume two relatively prime integers m,n and con-
sider the set of positive divisors of m · n using the previous lemma. Let
a multiplicative function f and show F (mn) = F (m)F (n) using previous
information.

Example 1.2.

F (8 · 3) = Σd|24f(d)

= f(1) + f(2) + f(3) + f(4) + f(6) + f(8) + f(12) + f(24)

= f(1 · 1) + f(2 · 1) + f(1 · 3) + f(4 · 1) + f(2 · 3) + f(8 · 1) + f(4 · 3) + f(8 · 3)

= f(1) · f(1) + f(2) · f(1) + f(1) · f(3) + f(4) · f(1) + f(2) · f(3)

+ f(8) · f(1) + f(4) · f(3) + f(8) · f(3)

= [f(1) + f(2) + f(4) + f(8)][f(1) + f(3)]

= Σd|8f(d) · Σd|3f(d)

= F (8)F (3).

4



Corollary 1.8. The functions τ and σ are multiplicative.
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1 Eulers PHI-Function

Definition 1.1. For n ≥ 1 let φ(n) denote the number of positive integers
not exceeding n that are relatively prime to n.

Example 1.1. Find φ(30).
We need to find the positive integers smaller than or equal to 30 that are

relatively prime to 30.
These numbers are

1, 7, 11, 13, 17, 19, 23, 29.

Therefore, φ(30) = 8.
We observe that the above list includes the prime numbers smaller than

30 except for the primes that factor 30, i.e., 30 = 2 ·3 ·5, and their multiples.

1



Notes

• φ(1) = 1, because gcd(1, 1) = 1.

• For n > 1, gcd(n, n) = n 6= 1, so φ(n) is equal to the number of
relatively prime integers to n that are smaller than n.

• We can show that

φ(p) = p− 1 if and only if p is prime.

If p is prime, then it is divisible by 1 and p only, therefore φ(p) = n−1.
If p is a composite number, then ∃k ∈ Z, k > 1 : k | p. Therefore we
have at least two integers k and n that divide n, hence φ(n) ≤ n− 2.

Theorem 1.2. If p is a prime and k > 0 then

φ(pk) = pk − pk−1 = pk
(

1− 1

p

)
.

Proof. Strategy. Find integers between 1 and pk divisible by p, then subtract
this number from pk to reach the result.

Lemma 1.3. Given integers a, b, c, gcd(a, bc) = 1 iff gcd(a, b) = 1 and
gcd(a, c) = 1.

Theorem 1.4. The function φ is a multiplicative function.

2



Theorem 1.5. If the integer n > 1 has the prime factorization n = pk11 p
k2
2 · · · pkrr ,

then

φ(n) = (pk11 − pk1−1
1 )(pk22 − pk2−1

2 ) · · · (pkrr − pkr−1
r )

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Proof. Proof strategy: utilize proof by induction, the previous lemma, and
the fact that φ is a multiplicative function.

Example 1.2. Find φ(360) using the previous theorem.
Prime factorization of 360 is 360 = 23 · 32 · 5.
By the previous theorem it follows that

φ(360) = 360(1− 1

2
)(1− 1

3
)(1− 1

5
)

= 360 · 1

2
· 2

3
· 4

5

= 360 · 4

15
= 96.

Theorem 1.6. For n > 2, φ(n) is an even integer.

Proof. Strategy. Use proof by cases to show that φ(n) is divisible by 2. Case
1: n is a power of 2. Case 2: n is not a power of 2, therefore is divisible by
an odd prime. Use previous theorem, and the fact that p− 1 is divisible by
2 to complete the proof.
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1 Euler’s Theorem

Lemma 1.1. Let n > 1 and gcd(a, n) = 1. If a1, a2, . . . , aφ(n) are the positive
integers less than n and relatively prime to n, then

aa1, aa2, . . . , aaφ(n)

are congruent modulo n to a1, a2, . . . , aφ(n) in some order.

Theorem 1.2 (Euler). If n ≥ 1 and gcd(a, n) = 1, then aφ(n) ≡ 1( mod n).

Proof. Strategy: take all positive integers less than n that are relatively
prime to n. We use previous lemma to produce the set of congruences and
multiply the congruences. Then use lemma of previous section to reach the
final result.

1



Corollary 1.3 (Fermat). If p is a prime and p - a, then ap−1 ≡ 1( mod p).

Example 1.1. Find the last two digits in the decimal representation of 3256.
This question is equivalent to that of finding the smallest nonnegative

integer to which 3256 is congruent modulo 100.
Because gcd(3, 100) = 1 and

φ(100) = φ(22 · 52) = 100 · (1− 1

2
)(1− 1

5
) = 100 · 1

2
· 4

5
= 40,

by Euler’s theorem it follows that

3φ(100) ≡ 1( mod 100) ∴ 340 ≡ 1( mod 100).

By the Division Algorithm 256 = 6 · 40 + 16, so

3256 = 36·40+16 = (340)
6 · 316 ≡ 316( mod 100).

Then
32 ≡ 9( mod 100)

34 ≡ 92 ≡ 81( mod 100)

38 ≡ 812 ≡ (−19)2 ≡ 361 ≡ 61( mod 100)

316 ≡ 612 ≡ (−39)2 ≡ 1521 ≡ 21( mod 100).

Applications of Euler’s theorem

• Different proof of the Chinese Remainder Theorem.

• If n is an odd integer that is not a multiple of 5, then n divides an
integer all of whose digits are equal to 1. One example is 7 | 111111.
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1 Order of an Integer Modulo n

Definition 1.1. Let n > 1 and gcd(a, n) = 1. The order of a modulo n,
or the exponent to which a belongs modulo n, is the smallest integer k such
that ak ≡ 1( mod n).

Let us find the order of 2 modulo 7. By inspection we have that

21 ≡ 2, 22 ≡ 4, 23 ≡ 1, 24 ≡ 2, 25 ≡ 4, 26 ≡ 1, . . .

Observe that the integer 2 has order 3 modulo 7.

Theorem 1.2. Let the integer a have order k modulo n. Then ah ≡ 1(
mod n) if and only if k | h; in particular k | φ(n).

We can use the previous theorem to narrow down our search for the order
of integer a modulo n by considering powers that are divisors of φ(n).

For example, let us find the order of 2 modulo 13. Because φ(13) = 12
our search ranges over the divisors of 12 that us 1, 2, 3, 4, 6, 12:

21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 3, 26 ≡ 12, 212 ≡ 1( mod 13).

Therefore 2 has order 12 modulo 13.

1



Theorem 1.3. If the integer a has order k modulo n, then ai ≡ aj( mod n)
if and only if i ≡ j( mod k).

Corollary 1.4. If a has order k modulo n, then the integers a, a2, . . . , ak are
incongruent modulo n.

Theorem 1.5. If the integer a has order k modulo n and h > 0, then ah has
order k/ gcd(h, k) modulo n.

Corollary 1.6. Let a have order k modulo n. Then ah also has order k if
and only if gcd(h, k) = 1.

Definition 1.7. If gcd(a, n) = 1 and a is of order φ(n) modulo n, then a is
a primitive root of the integer n.

Note that 3 is a primitive root of 7 because

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 36 ≡ 1( mod 7).

Example 1.1. We can show that if Fn = 22n + 1, n > 1 is a prime, then 2 is
not a primitive root of Fn.

Observe that 22n+1 − 1 = (22n − 1) · (22n + 1), so 22n+1 ≡ 1( mod Fn).
By definition the order of 2 modulo Fn is smaller than or equal to 2n+1.

Because Fn is prime,

φ(Fn) = Fn − 1 = 22n .

Also, we can show that 22n > 2n+1, when n > 1.
Hence the order of 2 modulo Fn is smaller than φ(Fn). Therefore 2 can

not be a primitive root of Fn.
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Theorem 1.8. Let gcd(a, n) = 1 and let a1, a2, . . . , aφ(n) be the positive in-
tegers less than n and relatively prime to n. If a is a primitive root of n,
then

a1, a2, . . . , aφ(n)

are congruent modulo n to a1, a2, . . . , aφ(n), in some order.

Corollary 1.9. If n has a primitive root, then it has exactly φ(φ(n)) of them.
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1 Primitive Roots for Primes

Theorem 1.1 (Lagrange). If p is a prime and

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

is a polynomial of degree n ≥ 1 with integral coefficients, then the congruence

f(x) ≡ ( mod p)

has at most n incongruent solutions modulo p.

Corollary 1.2. If p is a prime number and d | p− 1, then the congruence

xd − 1 ≡ 0( mod p)

has exactly d solutions.

Theorem 1.3. If p is a prime number and d | p− 1, then there are exactly
φ(d) incongruent integers having order d modulo p.

Corollary 1.4. If p is a prime, then there are exactly φ(p− 1) incongruent
primitive roots of p.

Example 1.1.

1
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1 Euler’s Criterion

The Quadratic Reciprocity Law deals with the solvability of quadratic con-
gruences.

Definition 1.1. Let p be an odd prime and gcd(a, p) = 1. If the quadratic
congruence x2 ≡ a( mod p) has a solution, then a is a quadratic residue of
p. Otherwise, a is called a quadratic nonresidue of p.

Theorem 1.2 (Euler’s criterion). Let p be an odd prime and gcd(a, p) = 1.
Then a is a quadratic residue of p if and only if a(p−1)/2 ≡ 1( mod p).

Corollary 1.3. Let p be an odd prime and gcd(a, p) = 1. Then a is a
quadratic residue or nonresidue of p according to whether

a(p−1)/2 ≡ 1( mod p)

or
a(p−1)/2 ≡ −1( mod p).

Example 1.1.

1
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1 The Legendre Symbol and its Properties

Definition 1.1. Let p be an odd prime and let gcd(a, p) = 1. The Legendre
symbol (a/p) is defined by

(a/p) =

{
1 if a is a quadratic residue of p

−1 if a is a quadratic nonresidue of p.

For the want of better terminology, we shall refer to a as the numerator
and p as the denominator of the symbol (a/p). Another standard notation
for the Legendre symbol is (a

p
), or (a | p).

Example 1.1.

Theorem 1.2. Let p be an odd prime and let a and b be integers that are
relatively prime to p. Then the Legendre symbol has the following properties:

1. If a ≡ b( mod p), then (a/p) = (b/p)

2. (a2/p) = 1

3. (a/p) ≡ a(p−1)/2( mod p)

4. (ab/p) = (a/p)(b/p)

1



5. (1/p) = 1 and (−1/p) = (−1)(p−1)/2.

Corollary 1.3. If p is an odd prime, then

(−1/p) =

{
1 mboxifp ≡ 1( mod 4)

−1 mboxifp ≡ 3( mod 4)
.

Example 1.2.

Theorem 1.4. There are infinitely many primes of the form 4k + 1.

Theorem 1.5. If p is an odd prime, then

Σp−1
a=1(a/p) = 0.

Therefore, there are precisely (p − 1)/2 quadratic residues and (p − 1)/2
quadratic nonresidues of p.

Corollary 1.6. The quadratic residues of an odd prime p are congruent
modulo p to the even powers of a primitive root r of p; the quadratic non
residues are congruent to the odd powers of r.

Theorem 1.7 (Gauss’s lemma). Let p be an odd prime and let gcd(a, p) = 1.
If n denotes the number of integers in the set

S =

{
a, 2a, 3a, . . . ,

(
p− 1

2

)
a

}
whose remainders upon division by p exceed p/2, then

(a/p) = (−1)n.

2



Theorem 1.8. If p is an odd prime, than

(2/p) =

{
1 if p ≡ 1( mod 8) or p ≡ 7( mod 8)

−1 if p ≡ 3( mod 8) or p ≡ 5( mod 8)

Corollary 1.9. If p is an odd prime, then

(2/p) = (−1)(p
2−1)/8.

Theorem 1.10. If p and 2p + 1 are both odd primes, then the integer
(−1)(p−1)/22 is a primitive root of 2p + 1.

Theorem 1.11. There are infinitely many primes of the form 8k − 1.

Lemma 1.12. If p is an odd prime and a an odd integer with gcd(a, p) = 1,
then

(a/p) = (−1)Σ
(p−1)/2
k=1 [ka/p].
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1 Quadratic Reciprocity

Theorem 1.1. If p and q are distinct odd primes, then

(p/q)(q/p) = (−1)
p−1
2

q−1
2 .

Corollary 1.2. If p and q are distinct odd primes, then

(p/q)(q/p) =

{
1 if p ≡ 1( mod 4) or q ≡ 1( mod 4)

−1 if p ≡ q ≡ 3( mod 4)

Corollary 1.3. If p and q are distinct odd primes, then

(p/q)(q/p) =

{
(q/p) if p ≡ 1( mod 4) or q ≡ 1( mod 4)

−(q/p) if p ≡ q ≡ 3( mod 4)

Example 1.1.

1



Theorem 1.4. If p 6= 3 is an odd prime, then

(3/q)(q/p) =

{
1 if p ≡ ±1( mod 12)

−1 if p ≡ ±5( mod 12)

Example 1.2.
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