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Discrete Math Introduction 

• In discrete math we are mainly concerned with integers 

• Integer arithmetic, puzzles,  games, digital clocks involve 

discrete math 

• Continuous math, calculus, rates of change are not 

related to discrete math 



Discrete Math Introduction 

• Topics of interest: 

• Series of integers 

 

• Repeated experiments (coin flip) 

 

• Sets of elements 

• Graph theory (social networks, world wide web) 
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Discrete Math Significance 

• Continuous mathematics serve as the foundation of 

physics and engineering 

• Discrete mathematics serve as the foundation of 

computer science 

• Discrete mathematics deal with digital logic (true/false, 

0/1) 



LOGIC 
Discrete Math I – MTSC 213 

Delaware State University 



Introduction 

• In discrete math we are mainly concerned with integers 

• Calculus deals with real numbers 

• Every area of mathematics deals with concepts and topics 

specific to this area 

• Often times, relationships between concepts is the topic 

of our study 

• These relationships are expressed as statements 

• Verifying statements is accomplished by using methods of 

proof 

• To understand methods of proof we need to know the 

concept of sets and logic 

 



Statements 

• Statements may be considered the ‘building blocks’ of 

logic 

• In mathematics we encounter and use them very often 

• Sometimes we are asked to verify if they are true 

 



Sentences 

• In English grammar we have the following types of 

sentences 

• Declarative, something is being declared or asserted 

• Interrogative, a question is asked 

• Imperative, a command is given 

• Exclamatory, in which an emotion is expressed 

 



Truth Values 

• Every statement has a truth value that is either true (T) or 

false (F) 

• Interrogative, imperative or exclamatory statements do 

not have a truth value 

 





Open Sentences 
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1 Negation, Conjuction and Disjunction

This section deals with operations between statements that produce new
statements. We also discuss the truth values of the produced statements.

1.1 Truth Tables

A table that contains all possible assigments of truth values for one or more
statements is called a truth table.
The tables for a single statement P or Q have two rows true (T), or false (F).
If we consider both statements at the same time we have 22 combinations as
seen in the third table.

P
T
F

Q
T
F

P Q
T T
T F
F T
F F

1.2 Negation

Definition 1.1. The negation of a statement P is the statement
not P (or It is not the case that P )
written in symbols as ∼P .
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The corresponding truth table is

P ∼P
T F
F T

Table 1: Truth table of negation.

Example 1.1. For a real number x, the negation of the open sentence P (x) :
(x− 2)2 > 0 is

∼P (x) : (x− 2)2 ≤ 0.

P (x) becomes a statement for each specific real number x. P (3) is true and
P (2) is false. ∼P (3) is false and ∼P (4) is true.

1.3 Conjunction

Definition 1.2. For two statements P and Q, the conjunction of P and Q
is the statement
P and Q
denoted by P ∧Q.

The truth table of a conjunction is

P Q P ∧Q
T T T
T F F
F T F
F F F

Table 2: Truth table of conjunction.

1.4 Disjunction

Definition 1.3. For two statements P and Q, the disjunction of P and Q is
the statement
P or Q
denoted by P ∨Q.

The truth table of a disjunction is
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P Q P ∨Q
T T T
T F T
F T T
F F F

Table 3: Truth table of disjunction.

1.5 Inclusive or Exclusive OR

The disjunction P ∨Q is referred to as inclusive or. On the other hand the
operator that is true when exactly one of P and Q is true, is called exclusive
or.

Definition 1.4. For two statements P and Q, the exclusive or of P and
Q is the statement
P or Q but not both
denoted by P ⊕Q.

The truth table of exclusive or is

P Q P ⊕Q
T T F
T F T
F T T
F F F

Table 4: Truth table of exclusive or.

Example 1.2. For an integer n, consider the two open sentences
P (n) : n3 + 2n is even and Q(n) : n2 − 4 < 0.
The conjunction, disjunction and exclusive or of P (n) and Q(n) are the open
sentences:
P (n) ∧Q(n) : n3 + 2n is even and Q(n) : n2 − 4 < 0.
P (n) ∨Q(n) : n3 + 2n is even or Q(n) : n2 − 4 < 0.
P (n)⊕Q(n) : n3 + 2n is even and Q(n) : n2 − 4 < 0 but not both.
P (1)∧Q(1) is false, while P (1)∨Q(1) is true. P (3)∧Q(3) and P (3)∨Q(3)
are false statements. Also, P (0) ⊕ Q(0) is false, while P (1) ⊕ Q(1) and
P (2)⊕Q(2) are both true.
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1.6 Compound Statements

The operations ∼, ∨, ∧, ⊕ are called logical connectives. A compound state-
ment is a statement constructed from one or more statements, called com-
ponent statements, and one or more logical connectives. Of special interest
are compound statements that have ”equal” truth tables.

Definition 1.5 (Logical Equivalence). Two compound statements R and S
constructed from the same component statements are logically equivalent
if R and S have the same truth value for all the combinations of truth values
of their component statements. If R and S are logically equivalent then we
write R ≡ S, while if R and S are not logically equivalent we write R 6≡ S.

Theorem 1.6 (Commutative Laws). For every two statements P and Q,
P ∧Q ≡ Q ∧ P and P ∨Q ≡ Q ∨ P .

P Q P ∧Q Q ∧ P
T T T T
T F F F
F T F F
F F F F

P Q P ∨Q Q ∨ P
T T T T
T F T T
F T T T
F F F F

Table 5: Truth table of exclusive or.

1.7 De Morgan’s Laws

The De Morgan’s Laws involve the logical connectives of negation, conjunc-
tion and disjunction.

Theorem 1.7 (De Morgan’s Laws). For every two statements P and Q,
(a) ∼(P ∨Q) ≡ (∼P ) ∧ (∼Q),
(b) ∼(P ∧Q) ≡ (∼P ) ∨ (∼Q).

Example 1.3. For a real number x, let P (x) : x2 − 8x + 15 = 0.
(a) Use the word or to describe those real numbers x for which P (x) is true.
(b) Use De Morgan’s Laws to describe those real numbers x for which P (x)
is false.
(a) P (x) is true when x = 3 or x = 5.
(b) P (x) is false when x 6= 3 and x 6= 5.
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Theorem 1.8. For every statement P ,
P ≡ ∼(∼P ).

This can be verified by use of the truth table.

P ∼ P ∼ (∼P )
T F T
F T F

Table 6: Truth table of ∼ (∼P ).

1.8 Associative and Distributive Laws

As we know the associative and distributive laws hold true for the addition
and multiplication of real numbers. Here we outline the logical equivalence
of statements involving conjunction and disjunction.

Theorem 1.9. Let P , Q and R be three statements. Then,
(a)Associative Laws
P ∨ (Q ∨R) ≡ (P ∨Q) ∨R and P ∧ (Q ∧R) ≡ (P ∧Q) ∧R
(b)Distributive Laws
P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) and P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R).

These laws can be verified by truth tables (left as homework).
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1 Implications

Definition 1.1. For two statements P and Q, the implication P → Q is
commonly written as
If P, then Q.

An implication is also sometimes referred to as a conditional. The statement
P in the implication P → Q is the hypothesis (or premise) of P → Q, while
Q is the conclusion (or consequence) of P → Q.

In the truth table below we observe the following for P → Q between two
statements P and Q:

• If the hypothesis P is false, then P → Q is true regardless of the truth
value of Q;

• If the conclusion Q is true, then P → Q is true regardless of the truth
value of P ;

• P → Q is false, only when the hypothesis P is true and the conclusion
Q is false.

Example 1.1. Determine the truth value of each of the following implica-
tions.
(a)If 2 + 3 = 5, then 4 + 6 = 10.
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P Q P → Q
T T T
T F F
F T T
F F T

Table 1: Truth table of implication.

(b)If 4 + 6 = 10, then 5 + 7 = 14.
(c)If 5 + 7 = 14, then 6 + 9 = 15.
(d)If 8 + 11 = 21, then 12 + 14 = 28.

Answer
(a) if T then T . This is a true implication.
(b) if T then F . This is a false implication.
(c) if F then T . This is a true implication.
(b) if F then F . This is a true implication.�

Example 1.2. For a real number x, consider the two open sentences
P (x) : x− 2 = 0. and Q(x) : x2 − x− 2 = 0.
Investigate for all real numbers x, the truth or falseness of the implication
P (x)→ Q(x) : If x− 2 = 0, then x2 − x− 2 = 0.

Answer
P (x) is true only when x = 2, so P (2) is true. Q(2) is also true, so
P (2) → Q(2) is true. For x 6= 2 P (x) is false, so P (x) → Q(x) is true,
regardless of the truth value of Q(x). So, P (x)→ Q(x) is true ∀x ∈ R.�

1.1 Stating implications in words

1.2 Converse of an implication

Definition 1.2. For statements (or open sentences) P and Q, the implication
Q→ P is called the converse of P → Q.
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P → Q
If P , then Q

Q if P
P implies Q
P only if Q

P is sufficient for Q
Q is necessary for P

Table 2: Expressing an implication.

1.3 Contrapositive of an implication

Definition 1.3. For statements (or open sentences) P and Q, the contra-
positive of implication P → Q is (∼ Q)→ (∼ P ).

Theorem 1.4. For every two statements P and Q,
P → Q ≡ (∼ Q)→ (∼ P ).

Thus, an implication and its contrapositive are logically equivalent.

P Q P → Q ∼Q ∼P (∼ Q)→ (∼ P )
T T T F F T
T F F T F F
F T T F T T
F F T T T T

Table 3: Logical equivalence of an implication and its contrapositive.

Theorem 1.5. For every two statements P and Q,
P → Q ≡ (∼P ) ∨Q.

We can show this using the truth table.

Theorem 1.6. For every two statements P and Q,
∼(P → Q) ≡ P ∧ (∼Q).

This can be verified as follows: ∼(P → Q) ≡ ∼((∼P )∨Q) ≡ (∼(∼P ))∧
(∼Q) ≡ P ∧ (∼Q).�

3



P Q P → Q ∼P ∼P ∨Q
T T T F T
T F F F F
F T T T T
F F T T T

Table 4: P → Q ≡ (∼P ) ∨Q.

Example 1.3. For an integer n, consider the open sentences
P (n) : n is even. Q(n) : n is not the sum of three odd integers.
(a) State P (n)→ Q(n) in words.
(b) State ∼ (P (n) → Q(n)) in words using the phrase ”it is not the case
that”.
(c) Use the previous theorem to restate ∼ (P (n)→ Q(n)) in words.

Answer
(a) If n is even, then n is not the sum of three odd integers.
(b) It is not the case that if n is even, then n is not the sum of three odd
integers.
(c) n is even, and n is the sum of three odd integers.�
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1 Biconditionals

1.1 If and only if

Definition 1.1. For two statements P and Q, the biconditional of P and
Q is the conjunction of the implication P → Q and its converse Q→ P . The
biconditional of P and Q is denoted by P ↔ Q. So P ↔ Q is the statement
(P → Q) ∧ (Q→ P ).

The biconditional P ↔ Q is expressed as
P if and only if Q
or
P is necessary and sufficient for Q.

The truth table of the biconditional statement can be evaluated as follows

P Q P → Q Q→ P P ↔ Q
T T T T T
T F F T F
F T T F F
F F T T T

Table 1: Truth table of biconditional.
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Example 1.1. Consider the statements:
P : I will receive an A on the exam.
Q: I study for at least 10 hours.
The biconditional of P and Q is
P ↔ Q: I will receive an A on the exam if and only if I study for at least
10 hours.

Answer The statement P ↔ Q is true when either
(a) I study for at least 10 hours and receive an A on the exam or
(b) I do not study for at least 10 hours and do not receive an A on the exam.�

The use of the expression if and only if for the biconditional can be ex-
plained as follows:
The biconditional P ↔ Q is defined as (P → Q) ∧ (Q→ P ).
By use of the commutative law we have
(P → Q) ∧ (Q→ P ) ≡ (Q→ P ) ∧ (P → Q).
Q→ P can be expressed as P if Q.
P → Q can be expressed as P only if Q.

Therefore (Q→ P ) ∧ (P → Q) can be expressed as
P if Q and P only if Q, or
P if and only if Q.
Frequently if and only if is abbreviated as iff.
In addition, P ↔ Q can be expressed as, P is necessary and sufficient
for Q.

Example 1.2. For an integer n, consider the open sentences
P (n) : (n− 1)2 = 0 and Q(n) : 7n− 3 = 0. The biconditional P ↔ Q is
P ↔ Q : (n− 1)2 = 0 if and only if 7n− 3 = 0
Investigate the truthness or falseness of the biconditional for various integers.

Answer
P (n) is true only when n = 1. Q(1) is false, so P ↔ Q is false for n = 1. For
n 6= 1, P (n) is false, and Q(n) is also false for all integers, therefore P ↔ Q
is true for n 6= 1.�

Example 1.3. Suppose that P and Q are two statements such that P → Q
is true and Q→ P is false. Please investigate the truth value of P ↔ Q.
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Answer
The biconditional P ↔ Q is defined as (P → Q) ∧ (Q → P ). Since Q → P
is false, P ↔ Q is false.�
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1 Tautologies and Contradictions

Definition 1.1 (Tautology). A compound statement is a tautology if it is
true for all possible combinations of truth values of its component statements.

Definition 1.2 (Contradiction). A compound statement is a contradiction
if it is false for all possible combinations of truth values of its component
statements.

Therefore, a compound statement S is a tautology if and only if its nega-
tion ∼ S is a contradiction.

For every statement P , the statement P ∨ (∼ P ) is a tautology, while
P ∧ (∼ P ) is a contradiction. This is verified by the following truth table.

P ∼ P P ∨ (∼ P ) P ∧ (∼ P )
T F T F
F T T F

Table 1: Truth table for a tautology and a contradiction.

Example 1.1. Because P ∨ (∼ P ) is a tautology and P ∧ (∼ P ) is a contra-
diction for every statement P , if we let
P (n) : P is even.
where n is an integer, then
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P ∨ (∼ P ) : n is even or n is odd
is a true statement for every integer n; while
P ∧ (∼ P ) : n is even and n is odd
is a false statement for every integer n.

Further, for any two logically equivalent statements R and S, the bicon-
ditional R↔ S is a tautology.

1.1 Modus Ponens and Modus Tollens

Example 1.2. Let P and Q be two statements. Show that (P∧(P → Q))→
Q is a tautology.

Answer
We use the truth table to verify that (P ∧ (P → Q))→ Q is a tautology.�

P Q P → Q P ∧ (P → Q) (P ∧ (P → Q))→ Q
T T T T T
T F F F T
F T T F T
F F T F T

Table 2: Truth table of modus ponens.

The tautology (P ∧ (P → Q))→ Q is called modus ponens (mode that
affirms the hypothesis) in logic.
The tautology (P → Q) ∧ (∼ Q))→ (∼ P ) is called modus tollens (mode
that denies the conclusion).

Example 1.3. Let P and Q be two statements. Show that (P → Q) ∧ (∼
Q))→ (∼ P ) is a tautology.

Answer
We use the truth table to prove that (P → Q) ∧ (∼ Q)) → (∼ P ) is a
tautology.�
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P Q P → Q ∼ Q (P → Q) ∧ (∼ Q)) ∼ P ((P → Q) ∧ (∼ Q))→ (∼ P )
T T T F F F T
T F F T F F T
F T T F F T T
F F T T T T T

Table 3: Truth table of modus tollens.
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Homework

Exercise 1

Use rules of logic to show that each pair of circuits in 1 have the same
input/output table. (Find the Boolean expressions for the circuits and show
that they are logically equivalent, when regarded as statement forms.)

a b

Figure 1:
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Exercise 2
For the circuits corresponding to the Boolean expressions below there is an
equivalent circuit with at most two logic gates. Find such a circuit.

1. (P ∧Q) ∨ ((∼ P ) ∧Q) ∨ ((∼ P ) ∧ (∼ Q))

2. ((∼ P ) ∧ (∼ Q)) ∨ ((∼ P ) ∧Q) ∨ (P ∧ (∼ Q))

2



Discrete Math I - MTSC 213
Lecture 6

Sokratis Makrogiannis, PhD, Assistant Professor
Department of Mathematical Sciences, Delaware State University

October 31, 2013

1 Application of Logic: Digital Circuits

1.1 Introduction

One wide-spread application of logic theory can be found in the domain of
digital electronics. In the late 1930’s Claude Shannon, then a young graduate
student of M.I.T. noticed an analogy between the operations of switching
devices, such as telephone switching circuits, and the operations of logical
connectives. He used this analogy to solve problems of circuit design. This
was the subject of his master’s thesis, which was published in 1938.

Figure 1: Circuit example with a battery, switch and light bulb. The switch
has two states: open (off) and closed (on).
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In figure 1, is displayed a simple circuit consisting of a battery, a light
bulb and a switch. When the switch is closed, current flows from one terminal
to the other. The light bulb turns on, if and only if, current flows through
it. This happens, if and only if, the switch is closed.

Now we consider the more complicated circuits of switches connected in
series, or in parallel (figure 2).

In the first case -switches in series- current flows, if and only if, both
switches P and Q are closed.

In the second case -switches in parallel- the current flows, if and only if,
either P , or switch Q is closed.

Figure 2: Switches connected in series, and in parallel.

The possible states of the two circuits are described in tables 1 and 2.
We note that, if we replace closed and on by T, and if we replace open

and off by F, then our tables become the truth tables for a conjunction
(table 1), and disjunction (table 2).
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Table 1: Switches in series.
P Q State

closed closed on
closed opened off
opened closed off
opened opened off

Table 2: Switches in parallel.
P Q State

closed closed on
closed opened on
opened closed on
opened opened off

Later on, in the 1940’s and 1950’s mainly driven by the invention of
electronic transistors, the switches were replaced by electronic devices, with
the physical states of closed and open replaced by high voltage and low
voltage. The breakthrough in electronics led to the development of digital
systems, such as digital electronic computers, electronic traffic light systems,
electronic calculators, etc.

Electronic engineers continue to use the language of logic when they refer
to signals. They use symbols 1 and 0 instead of true and false. The symbols
0 and 1 are called, binary digits, or bits. Statistician John Tukey introduced
this terminology.

1.2 Black boxes and gates

To simplify the design and analysis of electronic circuits, electronic and com-
puter engineers consider basic circuits as black boxes. The detailed descrip-
tion of the circuit is often ignored and the interest is focused on the input
and output signals of this box. In this manner the operation of a black box
is summarized by the input/output table that lists all possible input and
output signals.

The design of more complicated circuits is accomplished by connecting
simple components, known as gates. Three frequently used digital compo-
nents are the NOT-, AND- and OR- gates (figure 3 and table 3).
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A NOT-gate receives one input signal and produces one output signal.
Its function corresponds to the logical connective of negation ∼.

An AND-gate receives two input signals and produces one output signal.
Its function corresponds to the logical connective of conjunction ∧.

An OR-gate receives two input signals and produces one output signal.
Its function corresponds to the logical connective of disjunction ∨.

Figure 3: Fundamental NOT-, AND- and OR-gates from left to right.

Table 3: Logic of NOT-, AND-, OR-gates from left to right.

P R
1 0
0 1

P Q R
1 1 1
1 0 0
0 1 0
0 0 0

P Q R
1 1 1
1 0 1
0 1 1
0 0 0

Gates can be connected in different ways to create combinatorial circuits
whose operation is also described by an input/output table.

1.3 Input/output table for a circuit

For specific input signals we can determine the output signals of digital cir-
cuits by tracing the changes of input signals from one gate to the next. Figure
4 produces the input/output table 4.
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Figure 4: Find the output signals from input signals {P,Q} = {0, 1} and
{P,Q} = {1, 1}.

Similarly we can construct the input/output table for a circuit.

Table 4: Input/output table for circuit in figure 4.
P Q R
1 1 0
1 0 0
0 1 1
0 0 0

1.4 The Boolean expression corresponding to a circuit

One of the founders of symbolic logic was George Boole. In his honor, vari-
ables and statements that can take one of only two values are called Boolean
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variables. Expressions derived from Boolean variables and logical connectives
are also Boolean expressions.

So if we are given a circuit consisting of logical gates we can obtain the
Boolean expression by tracing the gates operation applied to the input vari-
ables.

Figure 5: Find the Boolean expression for this circuit.

The Boolean expression of circuit in figure 5 is
(P ∨Q) ∧ (∼ (P ∧Q)).

This is the expression for exclusive OR: P or Q but not both.

1.5 The circuit corresponding to a Boolean expression

Given a Boolean expression, we can design a circuit. Going from inner to
outer Boolean terms, corresponds to designing gates from left to right.
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For example, given the Boolean expression (∼ P ∧Q)∨ (∼ Q), we design
the circuit of figure 6.

Figure 6: The circuit corresponding to (∼ P ∧Q) ∨ (∼ Q).

1.6 Finding a circuit that corresponds to a given in-
put/output table

We can achieve this by the following steps:

• Identify each row for which the output is 1.

• For each such row, construct an AND expression so that it produces 1
for the exact combination of variables and 0 for all other combinations.

• Connect the previous expressions using OR-operations.

Definition 1.1 (Recognizer). A recognizer is a circuit that outputs 1 for
exactly one particular combination of input signals and outputs 0’s for all
other combinations.
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Let’s consider the example of the input/output table of figure 6 that is
displayed in table 5.

Table 5: Input/output for circuit in figure 6.
P Q R
1 1 0
1 0 1
0 1 1
0 0 1

We can connect several recognizers in parallel to produce the input/output
table 5, as explained before. The produced circuit is depicted in figure 7.

1.7 Simplifying combinatorial circuits

From the previous example we conclude that the circuits of figure 6 and
figure 7 have the same input/output table 5. These two circuits are called
equivalent.

Definition 1.2. Two digital logic circuits are equivalent if, and only if, their
input/output tables are identical.

In several cases we would like to simplify a combinatorial circuit and use
fewer gates. We can achieve this by application of rules of logic.

For example, let’s simplify the circuit in figure 8.
We first define the Boolean expression, then apply rules of logic to simplify

it. In the end we can design the simplified circuit from the final expression.
The Boolean expression is ((P ∧ (∼ Q)) ∨ (P ∧Q)) ∧Q.
So, we have: ((P ∧ (∼ Q)) ∨ (P ∧ Q)) ∧ Q ≡ (P ∧ (Q ∨ (∼ Q))) ∧ Q

≡ (P ∧ t) ∧Q ≡ P ∧Q.
We conclude that the circuit of figure 8 is logically equivalent to an AND-

gate and can be significantly simplified.�
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Figure 7: Circuit derived from input/output table.
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Figure 8: Simplify the circuit.
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1 Sets - Sets and Subsets

The concept of a set is fundamental in mathematics. Set theory is called the
field of study that deals with sets and their properties.

1.1 Sets and Subsets

A set is a collection of objects. The objects of a set are called the elements of
a set. We usually denote sets by capital letters, e.g. A, S,X and the elements
by lower case letters, e.g., x, y, z. Sets with relatively few elements can be
denoted by roster description, e.g., S = {x, y, z}. If b is an element of A, we
write b ∈ A, otherwise b 6∈ A.

Two sets A and B are equal, denoted by A = B, if they consist of exactly
the same elements. The order in which the elements are listed does not
matter, e.g.,

S = {x, y, z} = {y, x, z} = {y, z, x}.
The set A = {1, 2, 3, ..., 50} consists of integers from 1 to 50, and the set

S = {1, 3, 5, ...} consists of positive odd numbers. We use the three dots ...,
called an ellipsis to symbolize ”and so on (up to)”.

If a set contains no elements, it is called the empty set, null set, or void
set. The empty set is denoted by ∅, thus. ∅ = {}. A non empty set contains
at least one element. For a finite set A, we denote the number of the elements
of A by |A|, which is called the cardinality of a set.
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Example 1.1. Because the sets ∅ and {∅} do not consist of the same ele-
ments, {∅} 6= ∅. The set {∅} has one element, so |{∅}| = 1. The set ∅ has
no elements, so |∅| = 0.

Example 1.2. The set A = {1, {1, 3}, ∅, α} has four elements. Two of these
elements are sets, i.e. {1, 3}, and ∅. Because A has 4 elements, the cardinality
|A| = 4.

1.2 Well-known Sets of Numbers

Some well known infinite sets are:
The set of integers {...,−2,−1, 0, 1, 2, ...} is denoted by Z.
The set of positive integers, or natural numbers is denoted by N.
The set of rational number is denoted by Q.
The set of real numbers is denoted by R.
Other useful notations:
For a set S, let P (x) denote an open sentence involving elements x ∈ S.

Then
A = {x ∈ S : P (x)}
describes the set of those elements of S for which P (x) is true. When S

is known we can also use
A = {x : P (x)}.
The colon in these expressions can be interpreted as ”such as”. A vertical

line can be used for this too. For example,
A = {x ∈ S : P (x)} = {x ∈ S|P (x)}.

Example 1.3. List the elements of the following sets:
A = {x ∈ R : x2 − x− 6 = 0}
B = {x ∈ R : x2 + 1 = 0}.

Answer The set A represents the set of solutions of x2 − x − 6 = 0.
Factorization produces x2 − x− 6 = (x+ 2)(̇x− 3), so A = {−2, 3}. On the
other hand, x2 + 1 = 0 has no real number solution so B = ∅.

1.3 Subsets

Definition 1.1 (Subset). A set A is called a subset of a set B written A ⊆ B,
if every element of A also belongs to B.

According to the above definition, N ⊆ Z, Z ⊆ Q, and Q ⊆ R.
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Definition 1.2 (Proper subset). A set A is a proper subset of a set B written
A ⊂ B, if A ⊆ B but A 6= B.

We also observe that N ⊂ Z, Z ⊂ Q, and Q ⊂ R.

Example 1.4. For the sets A = {a, b, c} and C = {a, b, c, d, e}, find all sets
B such that A ⊂ B ⊂ C.

Answer The only subsets that satisfy this condition are {a, b, c, d} and
{a, b, c, e}.

1.4 Venn Diagrams

Venn diagrams are used to depict sets, subsets and their relations. A rectan-
gle may represent the universal set and closed curves are drawn to represent
the sets. The elements enclosed by the curves belong to the corresponding
sets. Figure 1 shows an example of a Venn diagram.

Figure 1: Venn diagram showing Greek, Latin and Cyrillic letters (source:
wikipedia).

Example 1.5. Figure 2 displays the Venn diagram of sets A and B.
We note that the elements

• 5, -3, 8, 9, 25 belong to A but not to B
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• 3, 17, -12, 19 belong to B but not to A

• 13, 2, -7 belong to both A and B

• -6 belongs to neith A nor B.

So A = {−7,−3, 2, 5, 8, 9, 13, 25}, B = {−12,−7, 2, 3, 13, 17, 19} and the
universal set is U = {−12,−7,−6,−3, 2, 3, 5, 8, 9, 13, 17, 19, 25}.

Figure 2:

Example 1.6. Give an example of three sets A, B and C such that A ∈ B,
A ⊂ B and B ∈ C.

Answer
We first choose A = {2, 5}. Then because A ∈ B and A ⊂ B, we choose
B = {A, 2, 5} = {{2, 5}, 2, 5}. We also have to satisfy B ∈ C, so we set
C = {B, 13} = {{{2, 5}, 2, 5}, 13}.

1.5 Power Sets

Definition 1.3 (Power set). The set of all subsets of a set A is called the
power set of A and is denoted by P(A). Thus
P(A) = {B : B ⊆ A}.

Theorem 1.4. If A is a set with |A| = n, where n is a nonnegative integer,
then
|P(A)| = 2n.
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Example 1.7. For A = {x ∈ Z : |x| ≤ 3}, how many elements are in P(A)?

Answer
Because A = {−3,−2,−1, 0, 1, 2, 3}, |A| = 7. Because of Theorem 1.4,
|P(a)| = 27 = 128.
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1 Set Operations and their Properties

1.1 Intersections and Unions

Definition 1.1 (Intersection). Let A and B be two sets. The intersection
A ∩B of A and B is the set of elements belonging to both A and B. Thus
A ∩B = {x : x ∈ A and x ∈ B}.

Definition 1.2 (Union). Let A and B be two sets. The union A ∪ B of A
and B is the set of elements belonging to at least one of A and B. Thus
A ∪B = {x : x ∈ A or x ∈ B}.

Because an element belongs to A ∪ B if it belongs to A ∩ B, it follows
that
A ∩B ⊆ A ∪B.

Example 1.1. For the sets C = {1, 2, 4, 5} and D = {1, 3, 5}
C ∩D = {1, 5} and C ∪D = {1, 2, 3, 4, 5}.

Theorem 1.3. For every three sets A, B and C:

• Commutative Laws: A ∩B = B ∩ A and A ∪B = B ∪ A

• Associative Laws: (A ∩ B) ∩ C = A ∩ (B ∩ C) and (A ∪ B) ∪ C =
A ∪ (B ∪ C)
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• Distributive Laws: A∩ (B∪C) = (A∩B)∪ (A∩C) and A∪ (B∩C) =
(A ∪B) ∩ (A ∪ C)

Two of the above set properties can be verified by using properties of
logic. We can verify A ∩B = B ∩A by showing that A ∩B B ∪A have the
same elements.

x ∈ A ∩B ≡ x ∈ A and x ∈ B
≡ x ∈ B and x ∈ A
≡ x ∈ B ∩ A.

In general, for n ≥ 2, the intersection of sets A1, A2, ..., An is
∪ni=1Ai = A1 ∪ A2 ∪ ... ∪ An = x : x ∈ Ai for every i with 1 ≤ i ≤ n;
and the union is
∩ni=1Ai = A1 ∩ A2 ∩ ... ∩ An = x : x ∈ Ai for some i with 1 ≤ i ≤ n.

Example 1.2. Let A1 = {1, 2}, A2 = {2, 3}, ..., A10 = {10, 11}. That is,
Ai = {i, i + 1} for i = 1, 2, ..., 10. Then,

A1 ∩ A2 ∩ ... ∩ A10 = ∅
and
A1 ∪ A2 ∪ ... ∪ A10 = {1, 2, 3, ..., 11}.

Definition 1.4. Two sets A and B are disjoint if they have no elements in
common, that is, if A ∩ B = ∅. A collection of sets is set to be pairwise
disjoint if every two distinct sets in the collection are disjoint.

Example 1.3. The set of even integers and the set of odd integers are dis-
joint. The set of negative rational numbers and the sets of irrational numbers
are disjoint.

1.2 Difference and Symmetric Difference

Definition 1.5. The difference A−B of two sets A and B is defined as
A−B = {x : x ∈ A and x 6∈ B}.

Sometimes, A−B may denoted also as ArB

Definition 1.6. The symmetric difference A ⊕ B of two sets A and B is
defined by:

A⊕B = (A−B) ∪ (B − A).
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From this definition it follows that
x ∈ A⊕B = x ∈ A⊕ x ∈ B.
We can interpret the symmetric difference using rules of logic. So, for

an element A ⊕ B we must have x ∈ A − B or x ∈ B − A. If x ∈ A − B,
then x ∈ A and x 6∈ B. Also, if x ∈ B − A, then x ∈ B and x 6∈ A. So, if
x ∈ A⊕B then x belongs to exactly one of A or B. This is equivalent to the
logical connective of exclusive or. This interpretation can be denoted as
x ∈ A⊕B ≡ (x ∈ A)⊕ (x ∈ B). The first ⊕ symbol denotes the symmetric
difference, while the second ⊕ symbol denotes the ”exclusive or” between
two statements.

We can use Venn diagrams to show that
A⊕B = (A ∪B)− (A ∩B) (left as an exercise).
It worth noting that even though Venn diagrams may suggest that two

sets are equal, this is not a mathematical proof.

Example 1.4. Let A,B,C be sets. Show that:
(A−B) ∩ (A− C) = A− (B ∪ C).

Answer
We need to show that (A−B)∩(A−C) ⊆ A−(B∪C) and A−(B∪C) ⊆

(A−B) ∩ (A− C).
First, we assume that x ∈ (A−B)∩(A−C). That is, x ∈ (A−B) and x ∈

(A − C). Next, x ∈ (A − B) means that x ∈ A and x 6∈ B). Similarly,
x ∈ (A − C) means that x ∈ A and x 6∈ C). So, x 6∈ B and x 6∈ C. By
definition, x 6∈ B ∪ C. So, x ∈ A and x 6∈ B ∪ C, that is x ∈ A − (B ∪ C)
and this can be expressed as

(A−B) ∩ (A− C) ⊆ A− (B ∪ C). (1)

Now, let’s assume that y ∈ A − (B ∪ C). So y ∈ A and y 6∈ (B ∪ C).
y 6∈ (B ∪ C) means that y 6∈ B and y 6∈ C. It follows that y ∈ A − B and
y ∈ A− C. The last can be expressed as y ∈ (A−B) ∩ (A− C), that is

A− (B ∪ C) ⊆ (A−B) ∩ (A− C). (2)

By combining equations 1 and 2 we conclude that
(A−B) ∩ (A− C) = A− (B ∪ C).�
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1.3 Complement of a Set

Definition 1.7. For a set A (that is a subset of the universal set U), the
complement A of A is the set of elements in the universal set not belonging
to A. That is,

A = {x ∈ U : x 6∈ A} = U − A

We can use Venn diagrams to show that
A ∪ A = U and A ∩ A = ∅.

Example 1.5. Let Z be the universal set and let E be the set of odd integers.
Then the complement E of E is the set of even integers. In addition, E∪E =
Z and E ∩ E = ∅.

Theorem 1.8 (De Morgan’s Laws). For two sets A and B,
A ∪B = A ∩B and A ∩B = A ∪B.

De Morgan’s laws for the complement of the union and intersection of
two sets results from De Morgan’s laws for the negation of the disjunction
and conjunction of two statements. We can show this as follows:

Let A and B be two sets that are subsets of a universal set U . Then,

x ∈ A ∪B ≡∼ (x ∈ A ∪B) ≡∼ (x ∈ A or x ∈ B)
≡∼ ((x ∈ A) ∨ (x ∈ B)) ≡ (x 6∈ A) ∧ (x 6∈ B)
≡ (x ∈ A) ∧ (x ∈ B) ≡ x ∈ A ∩B.
So, A ∪B = A ∩B.

Similarly, x ∈ A ∩B ≡∼ (x ∈ A ∩B) ≡∼ (x ∈ A and x ∈ B)
≡∼ ((x ∈ A) ∧ (x ∈ B)) ≡ (x 6∈ A) ∨ (x 6∈ B)
≡ (x ∈ A) ∨ (x ∈ B) ≡ x ∈ A ∪B.
So, A ∩B = A ∪B.
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1 Cartesian Products of Sets

New sets can be constructed from two given sets A and B by constructing
ordered pairs of their elements. For example given two elements a and b we
can construct the ordered pair (a, b), where a is the first coordinate of the
pair and b is the second coordinate of the pair.

Definition 1.1. For two sets A and B, the Cartesian product A × B of A
and B is the set of all ordered pairs whose first coordinate belongs to A and
second coordinate belongs to B. That is

A×B = {(a, b) : a ∈ A and b ∈ B}.

Example 1.1. For the sets A = {0, 1} and B = {∅, {1}, 2} determine A×B.

Answer
A×B = {(0, ∅), (0, {1}), (0, 2), (1, ∅), (1, {1}), (1, 2)}.�

The Cartesian product of n ≥ 2 sets A1, A2, ..., An is denoted by A1 ×
A2 × A3 × ...× An and is defined by

A1 × A2 × A3 × ...× An = {(a1, a2, ..., an) : ai ∈ Ai, for i = 1 ≤ i ≤ n}.
The elements (a1, a2, ..., an) are called ordered n-tuples. Ordered 2-tuples

are ordered pairs and ordered 3-tuples are ordered triples.
If Ai = A, for i = 1 ≤ i ≤ n then A1 × A2 × A3 × ... × An can also be

denoted by An.

1



2 Partitions

In many cases it is useful to divide a nonempty set A into nonempty subsets
in such a way that each element of A belongs to exactly one of these subsets.

Definition 2.1. A partition of a nonempty set A is a collection of nonempty
subsets of A such that every element of A belongs to exactly one of these
subsets.

A partition of a nonempty set A is therefore a collection of pairwise
disjoint nonempty subsets of A whose union is A. Thus is P = {S1, S2, ..., Sk}
is a partition of a nonempty set A, then

1. every subset Si is nonempty

2. every two different subsets Si and Sj are disjoint, and

3. the union of all subsets in P is A.

Example 2.1. Let A = {1, 2, ..., 8}. Which of the following collections of
subsets of A are partitions of A?

1. P1 = {{1, 4, 7, 8}, {3, 5, 6}, {2}}

2. P2 = {{1, 4}, {2, 8}, {3, 5, 7}}

3. P3 = {{1, 2, 4}, {3, 6, 8}, ∅, {5, 7}}

4. P4 = {{1, 7, 8}, {2, 5, 6}, {3, 4, 7}}

Answer
Only P1 is a partition. P2 misses one element, P3 includes the empty set as
an element, and P4 contains a common element between two subsets.�
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1 Methods of Proof

Familiarity with the fundamentals of Logic and Set prepares us for learning
how to read and understand proofs of theorems and be able to write our own
proofs.

In theorems we use definitions, assumptions, axioms, and other theorems
that have been previously proven.

A proof consists of a series of statements that follow a logical sequence
and lead to a conclusion.

2 Quantified Statements

Open sentences involve variableswhos values are taken from a domain.
A statement can be produced from an open sentence by assigning to each

variable in the open sentence a value from the domain.
We can also use quantifiers to form statements from open sentences.
There are two kinds of quantifiers: existential and universal.

Example 2.1. For the open sentence
R(n): n2 − n is even

over the domain Z of integers, the sentence
∀n ∈ Z, R(n): For every integer n, n2 − n is even

is a quantified statement.
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2.1 Universal Quantifiers

Let R(x) be an open sentence over the domain S. Then, for each element
a ∈ S, R(a) is a statement.

Phrases ”for all”, ”for each”, ”for every” are referred to as universal
quantifiers denoted by the symbol ∀.

The sentence,
∀x ∈ S,R(x)
is stated as
for every x ∈ S,R(x).
This sentence is a statement that is called quantified statement.
Quantified statements are also expressed as implications.

Example 2.2. Let R(n): 5n + 3 is even , be an open sentence over the do-
main S of odd integers.

The quantified statement
∀n ∈ S, R(n)

can be expressed as
For every odd integer, 5n + 3 is even,

or
If n is an odd integer, then 5n + 3 is even.

If R(x) is an implication P (x)→ Q(x) then the quantified statement
∀x ∈ S, P (x)→ Q(x)
is expressed as follows:

• For every x ∈ S, if P (x) then Q(x).

• If x ∈ S, then P (x) implies Q(x).

• Let x ∈ S. If P (x), then Q(x).

If R(x) is a biconditional statement P (x)↔ Q(x), then
∀x ∈ S , P (x)↔ Q(x)
is expressed as:

• For every x ∈ S , P (x) if and only if Q(x).

• If x ∈ S, then P (x) if and only if Q(x).

• Let x ∈ S. Then P(x) is necessary and sufficient for Q(x).

2



Example 2.3. For the open sentences P (n): n2iseven, Q(n): niseven where
n is an integer, the quantified statement

∀n ∈ Z, P (n)↔ Q(n)
can be expressed as:

• For every integer n, n2 is even if and only if n is even.

• Let n be an integer. Then n2 is even if and only if n is even.

• Let n ∈ Z. Then n2 is even is a necessary and sufficient condition for
n to be even.

2.2 Existential Quantifiers

The phrases ”there exists”, ”there is”, ”for some”, and ”for at least one” are
referred to as existential quantifiers, denoted by ∃.

For an open sentence Q(x), the sentence
∃x ∈ S , Q(x)
is a quantified statement expressed as

• There exists x ∈ S, such that Q(x).

• For some x ∈ S , Q(x).

• For at least one x ∈ S , Q(x).

Example 2.4. For the open sentence Q(x) : x5 + 55x = 3x3, where x is a
real number, the quantified statement

∃x ∈ R, Q(x)
can be expressed as

• There exists x ∈ R, such that x5 + 55x = 3x3.

• For some x ∈ R, x5 + 55x = 3x3.

• For at least one x ∈ R, x5 + 55x = 3x3.
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2.3 Negations of Quantified Statements

For an open sentence R(x) over the domain S, the negation of ∀x ∈ S , R(x)
is expressed as

∼ (∀x ∈ S , R(x)): It is not the case that R(x) for every x ∈ S.
This is also stated as:

There exists x ∈ S, such that not R(x),
or,

∃x ∈ S, ∼ R(x).
Therefore

∼ (∀x ∈ S , R(x)) ≡ ∃x ∈ S, ∼ R(x).
The negation of ∃x ∈ S, R(x) is:
∼ (∃x ∈ S, R(x)) : There does not exist x ∈ S, such that R(x).

This is equivalent to:
For every x ∈ S, not R(x).

or
∼ (∃x ∈ S, R(x)) ≡ ∀x ∈ S, ∼ R(x).

Example 2.5. State the negation of the following statements

(a) Everyone likes the ”Wizard of Oz”.

(b) There is a city whose population exceeds that of Mexico City.

Answer
The negation of (a) is
There exists someone who does not like the ”Wizard of Oz”.
The negation of (b) is
The population of every city is does not exceed that of Mexico city.
An equivalent expression is
The population of no city exceeds that of Mexico City.
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1 Direct Proof

We previously described universal and existential quantifiers.

• The statement ∀x ∈ S, R(x) is true if R(x) is true for each x ∈ S.
Therefore, ∀x ∈ S,R(x) is false if R(x) is false for at least one element
x ∈ S.

• The statement ∃x ∈ S, R(s) is true if there exists at least one element
x ∈ S for which R(x) is true. So, ∃x ∈ S, R(s) is false if R(x) is false
for every element x ∈ S.

Example 1.1. Let S = {3, 4, 5} and let
R(x): x2+5x+4

2
is even.

be an open sentence over the domain S.
(a) State R(x) for each x ∈ S and determine its truth value.
(b) State ∀x ∈ S, R(x) and determine its truth value.
(c) State ∃x ∈ S, R(x) and determine its truth value.
Answer
(a)

R(3): 14 is even (a true statement).
R(4): 20 is even (a true statement).
R(5): 27 is even (a false statement).

(b) ∀x ∈ S, R(x): For every x ∈ S, x
2+5x+4

2
is even.
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This is false, because R(5) is false.
(c) ∃x ∈ S, R(x): There isx ∈ S, such that x2+5x+4

2
is even.

This quantified statement is true because there is at least one value of x
for which R(x) is true, for example x = 3.

Definition 1.1 (Proof). A proof of a statement is a presentation of a logical
argument that demonstrates the truth of the statement.

A proof of a statement R consists of a sequence of statements in logical
order. The proof leads to a desired conclusion that R is true. In the proof
we can use the following:

1. definitions of concepts

2. axioms or principles that have been agreed upon

3. assumptions we may have made

4. previous theorems.

A proof can be written in different ways according to the intended audi-
ence. The presentation must be clear, make solid assumptions, and include
necessary level of detail to be understood by the reader.

Before writing proofs, one should study and understand proofs by other
authors.

Let’s begin from the universal quantifier. This is expressed as ∀x ∈
S, R(x), and when R(x) is an implication it becomes ∀x ∈ S, P (x)→ Q(x).

The most common way to verify a statement of the form
∀x ∈ S, P (x)→ Q(x)

is to use the method of direct proof.
To prove that ∀x ∈ S, P (x) → Q(x) is true by means of a direct proof,

we begin by assuming that P (x) is true for an arbitrary element x ∈ S and
then we show that Q(x) is true.

To generalize, when we want to prove that ∀x ∈ S, R(x) is true using
direct proof, we first assume that x is an arbitrary element in S and then
show that R(x) is true.

The next sections deal with proofs of mathematical statements that we
refer to as results. Some authors call all true mathematical statements the-
orems, but others call them, observations, facts, results, propositions, or
theorems according to their importance. We will use the term theorem for
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mathematical statements that are particularly interesting, useful and signif-
icant.

For example, we will call the statement Letx ∈ R. If x−2 = − then x2−
x− 2 = 9 a result, but not a theorem.

1.1 Examples of Direct Proof

We will demonstrate this proof method with simple examples. We often
precede the proof with an idea or a plan to be used to construct the proof.
This is called proof strategy. In addition, after proving the theorem we may
discuss ideas used in the proof, that is called proof analysis.

Result 1.2. Let x be a real number. If x− 2 = 0, then x2 − x− 2 = 0.

Proof strategy In a direct proof, we first assume that x − 2 = 0. We
need to show that x2 − x − 2 = 0. We observe that x2 − x − 2 = 0 can be
factored as (x−2)(x+1). Given that x−2 = 0 we can verify the mathematical
statement.

Proof Assume that x − 2 = 0. Then x2 − x − 2 = (x − 2)(x + 1) =
0 · (x + 1) = 0.�

Proof Analysis The statement starts with ”Let x be a real number.”
This means that x belongs to the domain of real numbers. We could also
prove the statement by assuming x − 2 = 0, x = 2 because x2 − x − 2 =
22 − 2− 2 = 0.

In the next case we will use the following property of integers
If a and b are integers, then so too are −a, a + b and ab.

Also the following definition is useful

Definition 1.3. An integer n is even if n = 2a for some integer a. An integer
n is odd if n = 2b + 1 for some integer b.

In general we need to prove properties of even and odd integers. Once we
have proved these properties, we can use them in other theorems.

Result 1.4. If n is an even integer, then n2 + 4n− 3 is odd.

Proof Let n be an even integer. Then n = 2k for some integer k. Then
n2 + 4n− 3
= (2k)2 + 4(2k)− 3
= 4k2 + 8k − 3 = (4k2 + 8k − 4) + 1
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= 2(2k2 + 4k − 2) + 1).
Because of 1.1, 2k2 + 4k − 2 is an integer, so 2(2k2 + 4k − 2) + 1) and

n2 + 4n− 3 is odd.�
Proof Analysis We have shown that n2 + 4n− 3 = 4k2 + 8k − 3 for an

even number k. Also, we could seemingly use 4k2+8k−3 = 2(2k2+4k−1)−1
to show that this expression is odd. bu te can’t, because we have not shown
that an odd integer n can be written as 2k − 1, where k is an integer.

In other cases we are asked to prove that
For x ∈ S and y ∈ T , P (x, y)→ Q(x, y).

is true.
Here, we first assume that P (x, y) is true for arbitrary elements x ∈ S

and y ∈ T , then show that Q(x, y) is true.
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1 Proof by Contrapositive

Let P and Q be two statements or open sentences, and an implication P → Q
between P and Q. The contrapositive of P → Q is (∼ Q) → (∼ P ). We
have shown that

P → Q ≡ (∼ Q)→ (∼ P ).
So if we are asked to prove that ∀x ∈ S, P (x)→ Q(x) is true one method

of proof is to verify that
∀x ∈ S, (∼ Q)→ (∼ P ) is true

using direct proof. This method is called proof by contrapositive.

So, to prove that ∀x ∈ S, P → Q is true using a proof by contrapositive,
we assume that Q(x) is false for an arbitrary element x ∈ S and show that
P (x) is also false.

Result 1.1. Let n be an integer. If 7n + 3 is an odd integer, then n is an
even integer.

Proof Assume that n is not an even integer. Then n is an odd integer
n = 2 + 1, for k ∈ Z. Then,

7n + 3 = 7(2k + 1) + 3 = 14k + 4 = 2(7k + 1).
Because 7k + 1 is an integer, 7n + 3 is even.
Proof Analysis We first express the contrapositive of our statement and

then follow a direct proof method.
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Result 1.2. Let x be a real number. If x3 + 3x2 + 2x + 1 ≤ 0, then x < 0.

Proof
Assume that x ≥ 0. Then
x3 ≥ 0, 3x2 ≥ 0 and 2x ≥ 0. So,

x3 + 3x2 + 2x + 1 ≥ 0 + 0 + 0 + 1 > 0.�

1.1 Proofs of Biconditionals

We now consider the biconditional in a quantified statement
∀x ∈ S, P (x)↔ Q(x)

where P (x), Q(x) are open sentences over a domain S.

The biconditional is defined as
P (x)↔ Q(x) ≡ (P (x)→ Q(x)) ∧ (Q(x)→ P (x)),

which is the conjunction of an implication and its converse.

To prove that ∀x ∈ S, P (x) ↔ Q(x) is true, we must prove that ∀x ∈
S, P (x)→ Q(x) is true and ∀x ∈ S, Q(x)→ P (x) is true.

Result 1.3. Theorem to prove: Let n be an integer. Then n2 is even if and
only if n is even.

Proof strategy This statement is biconditional, so we need to prove two
implications according to the definition.

Let P (n) be the statement P (n): n2 is even and Q(n): n is even. We can
write the theorem to prove as ∀n ∈ Z: P (n)↔ Q(n). Therefore we need to
prove ∀n ∈ Z: P (n)→ Q(n) and ∀n ∈ Z: Q(n)→ P (n). We will prove the
latter statement by direct proof and the former statement by contrapositive.

Theorem 1.4. Let n be an integer. Then n2 is even if and only if n is even.

Proof Assume that n is even. Then n = 2a for a ∈ Z. Then, n2 =
(2a)2 = 4a2 = 2(2a2).

Because 2(2a2) is even, n2 is even.

Next, we verify the converse. Here we utilize proof by contrapositive.
Assume that n is not even that is n is odd and n = 2b + 1, b ∈ Z. Then

n2 = (2b + 1)2 = 4b2 + 4b + 1 = 2(2b2 + 2b) + 1.

2



Based on properties of integers, 2b2 + 2b is an integer, so n2 is odd.�

We note here that this theorem can be expressed using contrapositives as
follows.

Theorem 1.5. Let n be an integer. Then n2 is odd iff n is odd.
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1 Proof by Cases

Let’s consider the statement ∀x ∈ S, R(x). In some occasions, knowing
x ∈ S does not provide enough information to show that R(x) is true.

In such cases we may divide S into a collection P of subsets of S that is
usually a partition of S. The proof is then divided into cases according to
subsets.

For example, if we are asked to prove a statement in the domain of inte-
gers, it may be helpful to partition Z into the sets of positive and negative
integers. Similarly, when our statement involves an absolute value |x|, then
it may help to prove the cases of negative and positive integers separately.

Overall, if we wish to prove a statement including an element x in set S,
then it may be useful to create a partition P of S. Then the proof can be
divided into cases that correspond to the particular subsets of S in P .

Example 1.1. If n is an integer, n2 − n is an even integer.

Proof Let n be an integer. We consider two cases, (1) n is even, and (2)
n is odd.

Case 1. n is even. Then there exists an integer a, such that n = 2a.
Then,

n2 − n = (2a)2 − 2a = 4a2 − 2a = 2(2a2 − a).
Because 2a2 − a is an integer n2 − n is even.

1



Case 2. n is odd. Then there exists an integer b, such that n = 2b + 1.
Then,
n2 − n = (2b + 1)2 − (2b + 1) = 4b2 + 4b + 1− 2b− 1 = 4b2 + 2b = 2(2b2 + b).

Because 2b2 + b is an integer n2 − n is even.�

1.1 Parity of Integers

Two integers m and n are said to be of the same parity, if both of them are
even or both are odd; otherwise m and n are of opposite parity.

Example 1.2. Result to prove: Let m and n be two integers. Then 3m + n
is even if and only if m and n are of the same parity.

Proof This is a quantified biconditional statement of the form ∀, x ∈
S, P ↔ Q. Therefore we will need to prove that ∀, x ∈ S, Q → P and
∀, x ∈ S, P → Q. We will solve the former by direct proof and the latter by
proof by contrapositive.

We first assume that m and n are of the same parity. We divide this into
two cases.

Case 1. m and n are even. Thus, m = 2a and n = 2b for some integers
a, b ∈ Z. Then,

3m + n = 3(2a) + 2b = 6a + 2b = 2(3a + b).
Because 3a + b is an integer, 3m + n is even.

Case 2. m and n are odd. Thus, m = 2a + 1 and n = 2b + 1 for some
integers a, b ∈ Z. Then,

3m + n = 3(2a + 1) + (2b + 1) = 6a + 3 + 2b + 1 = 6a + 2b + 2 = 2(3a + b + 1).
Because 3a + b + 1 is an integer, 3m + n is even.

We prove ∀, x ∈ S, P → Q by contrapositive. Then we have the following
statement: Let m and n be two integers. If m and n are of opposite parity,
then 3m + n is odd. So, let m and n be of opposite parity. We divide this
statement into cases.

Case 1. m is even and n is odd. So, m = 2a and n = 2b + 1 for some
integers a, b ∈ Z. Then,

3m + n = 3(2a) + 2b + 1 = 6a + 2b + 1 = 2(3a + b) + 1.

2



Because 3a + b is an integer, 3m + n is odd.

Case 2. m is odd and n is even. Then for some integers a, b ∈ Z,
m = 2a + 1 and n = 2b. Then,

3m + n = 3(2a + 1) + 2b = 6a + 3 + 2b = 6a + 2b + 2 + 1 = 2(3a + b + 1) + 1.
Because 3a + b + 1 is an integer, 3m + n is odd. �

1.2 Without Loss of Generality

Sometimes when we use the proof by cases method, the proofs of two cases
are very similar and proving both cases becomes repetitive.

Then we can choose to prove one case only and state that we are doing
this without loss of generality.

Example 1.3. Let A, B and C be sets. Then
(A−B) ∪ (A− C) = A− (B ∩ C).

Proof Here we need to prove that (A−B)∪ (A−C) ⊆ A− (B ∩C) and
A− (B ∩ C) ⊆ (A−B) ∪ (A− C).

We first show that (A − B) ∪ (A − C) ⊆ A − (B ∩ C). Let x ∈
(A − B) ∪ (A − C). Then x ∈ (A − B) or x ∈ (A − C). We will follow
proof by cases.

Case 1. Let x ∈ (A− B). Then x ∈ A and x 6∈ B. So x 6∈ (B ∩ C). Be-
cause x ∈ A and x 6∈ (B∩C), then x ∈ A− (B∩C). So, (A−B)∪ (A−C) ⊆
A− (B ∩ C).

Case 2. Let x ∈ (A − C). Then x ∈ A and x 6∈ C. So x 6∈ (B ∩ C).
Because x ∈ A and x 6∈ (B ∩ C), then x ∈ A − (B ∩ C). Therefore
(A−B) ∪ (A− C) ⊆ A− (B ∩ C).

Next, we show that A−(B∩C) ⊆ (A−B)∪(A−C). Let x ∈ A−(B∩C).
Then x ∈ A and x 6∈ (B ∩ C). By DeMorgan’s Laws x ∈ A and x 6∈ B or
x 6∈ C.
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Case 1. Let x 6∈ B. Because x ∈ A, x ∈ (A − B). Therefore, x ∈
(A−B) ∪ (A− C). So, (A−B) ∪ (A− C) ⊆ A− (B ∩ C).

Case 2. Let x 6∈ C. Because x ∈ A, x ∈ (A − C). Therefore, x ∈
(A−B) ∪ (A− C). So, (A−B) ∪ (A− C) ⊆ A− (B ∩ C).�
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1 Counterexamples

In the previous sections we dealt with methods of proof for quantified state-
ments of the form ∀x ∈ S, R(x). These statements are true if R(x) is true
for all elements in S. We also saw that the negation of this statement is

∼ (∀x ∈ S, R(x)) ≡ ∃x ∈ S, ∼ (R(x)).
This means that our statement is false, if R(x) is false for at least one

element of S.

Now let’s consider the statement ∀x ∈ S, P (x) → Q(x). To show
that this statement is false we need to find an element a ∈ S such that
P (a) → Q(a) is false. The element a ∈ S is called a counterexample for
the statement ∀x ∈ S, P (x) → Q(x). A counterexample of this statement
is an element for which P (x) is true and Q(x) is false. Such an element is
said to disprove the statement.

Result 1.1. Disprove: For every two sets A and B, P(A∪B) = P(A)∪P(B).

Proof Let A = {1} and B = {2}.
Then, P(A) = {∅, {1}} and P(B) = {∅, {2}}.
P(A ∪B) = {∅, {1}, {2}, {1, 2}, but P(A) ∪ P(B) = {∅, {1}, {2}}.
Therefore P(A ∪B) 6= P(A) ∪ P(B).�

Result 1.2. Prove or disprove the following:

(a) Let S = {1, 4, 5, 8}. If n ∈ S, then (n2−n)
2

is an even integer.
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(b) Let S = {1, 4, 5, 6, 8}. If n ∈ S, then (n2−n)
2

is an even integer.

Proof (a) Let n ∈ S. We have four cases.

Case 1. n = 1. Then (n2−n)
2

= 0 is even.

Case 2. n = 4. Then (n2−n)
2

= 6 is even.

Case 3. n = 5. Then (n2−n)
2

= 10 is even.

Case 4. n = 8. Then (n2−n)
2

= 28 is even.

Therefore, the statement, If n ∈ S, then (n2−n)
2

is an even integer, is
true.�

(b) We test the additional case n = 6.

Then, (n2−n)
2

= 15 that is false.
So the statement is false and n = 6 is a counterexample.�

2 Existence Proofs

In this section we discuss proofs of quantified statements of the form ∃x ∈
S, R(x). We have seen that the statement ∃x ∈ S, R(x) is true if R(x) is
true for at least one element of S. Therefore, to prove this statement we
need to show that there is some element a ∈ S for which R(a) is true. This
method of proof is called existence proof.

Result 2.1. Disprove the following statement:
There exists x ∈ R such that x4 + 2 = 2x2 .

Proof We are asked to prove that the above statement is false. So we
need to show that x4 + 2 = 2x2 has no solution in the real number domain.
Therefore we have to show that

∀x ∈ R, x4 + 2 6= 2x2

The formula x4 + 2 6= 2x2 is equivalent to x4 + 2− 2x2 6= 0. Then
x4 + 2− 2x2 = x4 − 2x2 + 2 = x4 − 2x2 + 1 + 1 = (x2 − 1)2 + 1.
Given that (x2− 1)2 ≥ 0, (x2− 1)2 + 1 ≥ 1, therefore (x2− 1)2 + 1 6= 0.�

Result 2.2. Disprove the following statement:
For every positive integer n, there exists a negative integer m such that

n + m = 1.

Proof Let n = 1.
Then, for every negative number m < 0, n + m < 1 + 0 < 1.
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Therefore the statement is false, or in other words n = 1 is a counterexample.�
Proof analysis We are called to disprove a statement of the type ∀n ∈

S,∃m ∈ T,R(n,m).
The negation of this statement is ∃n ∈ S,∀m ∈ T,∼ (R(n,m)).
To show that the negation is true, we need to find an element n ∈ S so

that for every element m ∈ T R(x, y) is false.

Result 2.3. Prove or disprove the following:
(a) There exist distinct rational numbers a and b such that (a−1)(b−1) =

1.
(b) There exist distinct rational numbers a and b such that 1

a
+ 1

b
= 1.

Proof (a) Let a = 5.
Then for b = 5/4, (a− 1)(b− 1) = 1.�
(b) Let a = 5.
Then for b = 5/4, 1

a
+ 1

b
= 1.�

Proof Analysis We observe that,
(a−1)(b−1) = 1↔ ab−a− b+ 1 = 1↔ ab−a− b = 0↔ ab

ab
− a

ab
− b

ab
=

0↔ 1− 1
b
− 1

a
↔ 0.

We can express this as follows:
For two distinct real numbers a and b,
(a− 1)(b− 1) = 1 is true, if and only if,
ab = a + b is true, if and only if,
1
b

+ 1
a

= 1 is true.
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1 Proof by Contradiction

So far, we have learned the methods of direct proof and proof by contrapos-
itive for statements R of the type ∀x ∈ S, P (x)→ Q(x).

This section deals with a third method of proof. Here we assume that
R(x) is false. Suppose that this assumption leads to a statement that con-
tradicts an assumption we made in the proof. If the fact or assumption is P
then the contradiction we have deduced is C ≡ P ∧ (∼ P ). So in this case
we have shown that the logical statement (∼ R) → C is true. Because C is
false, (∼ R) must be false, therefore our original statement R is true.

To verify that a statement R is true by proof by contradiction, we first
assume that R is false and then conclude with a contradiction. When R is
∀x ∈ S, P (x) → Q(x), then we assume that there is some x ∈ S, such that
P (x) is true and Q(x) is false. Then we attempt to reach a contradiction
that will verify our original statement.

Result 1.1. The sum of a rational number and an irrational number is an
irrational.

Proof Assume that there is a rational number a and an irrational number
b, such that a + b = c is rational.

Then, a = m
n

and c = p
r

where m,n, p, r ∈ Z and r 6= 0, n 6= 0.

1



So, a + b = c is equivalent to m
n

+ b = p
r
.

Then, b = p
r
− m

n
and b = pn−mr

rn
.

Because m,n, p, r ∈ Z and r 6= 0, n 6= 0 b is a rational number, which
contradicts our assumption that b is irrational.�

Result 1.2. Prove that
√

2 +
√

3 is an irrational number.

Proof Let
√

2 +
√

3 be rational. Then, ∃a, b ∈ Z, b 6= 0 :
√

2 +
√

3 = a
b
.

Then, (
√

2 +
√

3)
2

= a2

b2
↔ 2 + 3 + 2

√
6 = a2

b2
↔ b2(2 + 3 + 2

√
6) = a2 ↔

2b2 + 3b2 + 2
√

6b2 = a2 ↔ 5b2 + 2
√

6b2 = a2 ↔ 2
√

6b2 = a2 − 5b2 ↔
√

6 =
a2−5b2

2b2
.�

Because a, b ∈ Z, a2 − 5b2 ∈ Z and 2b2 ∈ Z. Therefore,
√

6 is a rational,
which is a contradiction.�

Result 1.3. Prove that there is no smallest positive irrational number.

Proof Let s be the smallest positive irrational number, s > 0.
Also, assume that ∃r ∈ Q : r = s/2.
Then r = a/b, a, b ∈ Z and b 6= 0.
It follows that s = 2r = 2(a/b).
Because r ∈ Q, then s ∈ Q, which contradicts our assumption that

s ∈ R−Q.�

Result 1.4. Prove that there do not exist three distinct positive real numbers
a, b and c such that two of the three numbers

√
a + b,

√
b + c and

√
a + c are

equal.

Proof Assume that there exist three distinct positive real numbers a, b
and c such that

√
a + b =

√
b + c.

Then, (
√
a + b)2 = (

√
b + c)2 ↔ a + b = b + c↔ a = c.

The latter equality contradicts our assumption that a, b and c are distinct.�

Result 1.5. Use proof by contradiction to prove the following: Assume that
n is an integer. If 3n + 14 is even, then n is even.

Proof Let n be an integer, 3n + 14 be even, and n be odd. Then,
n = 2k + 1 for some integer k.
Therefore 3n+14 = 3(2k+1)+14 = 6k+17 = 6k+16+1 = 2(3k+8)+1.
This means that 3n + 14 is odd that contradicts our assumption that

3n + 14 is even.�
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1 Mathematical Induction

We have reviewed three methods of proving the quantified statement of the
form

∀x ∈ S, R(x),
where R(x) is an open sentence over a domain S. These three proof tech-

niques are direct proof, proof by contrapositive, and proof by contradiction.
If S = N, then there is another method of proof that we can use the

method of mathematical induction to prove that ∀n ∈ N, R(n).

2 The Principle of Mathematical Induction

Given a statement ∀n ∈ N, P (n), the main idea of mathematical induction
is to verify that P (n) is true for n = 1 and to establish the truth of a specific
implication.

The Principle of Mathematical Induction The statement
∀n ∈ N, P (n)

is true if
(1) P (1) is true and
(2) the statement ∀k ∈ N, P (k)→ P (k + 1) is true.
A proof using the Principle of Mathematical Induction is called an induc-

tion proof, a proof by mathematical induction, or a proof by induction.

1



The first step is called the base, basis step, or anchor.
The second step is called the inductive step.
P (k) is called the inductive hypothesis or induction hypothesis.
The statement ∀k ∈ N, P (k) → P (k + 1) is usually verified using proof

by hypothesis.

Result 2.1. For every positive integer n,
1
1·2 + 1

2·3 + 1
3·4 + ... + 1

n·(n+1)
= n

n+1
.

Proof
We proceed by induction.
Basis step: we verify that the statement is true for n = 1.
We observe that 1

1·2 = 1
1+1

.
Inductive step: Let
1
1·2 + 1

2·3 + 1
3·4 + ... + 1

k·(k+1)
= k

k+1
.

where k is a positive integer.
We show that
1
1·2 + 1

2·3 + 1
3·4 + ... + 1

(k+1)·(k+2)
= k+1

k+2
.

We observe that
1
1·2 + 1

2·3 + 1
3·4 + ... + 1

(k+1)·(k+2)

=
[

1
1·2 + 1

2·3 + 1
3·4 + ... + 1

k·(k+1)

]
+ 1

(k+1)·(k+2)

= k
k+1

+ 1
(k+1)·(k+2)

= k·(k+2)+1
(k+1)·(k+2)

= k2+2k+1
(k+1)·(k+2)

= (k+1)2

(k+1)·(k+2)

= (k+1)
(k+2)

.
By the principle of Mathematical Induction, it then follows that

1
1·2 + 1

2·3 + 1
3·4 + ... + 1

n·(n+1)
= n

n+1

for every positive n.�
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Result 2.2. For every positive integer n,
1 + 2 + ... + n = n·(n+1)

2

Proof We use induction.
Basis step: For n = 1 we observe that 1 = 1·(1+1)

2
.

Inductive step: Let
1 + 2 + ... + k = k·(k+1)

2

for a positive integer k. We show that
1 + 2 + ... + (k + 1) = (k+1)·(k+2)

2
We observe that

1 + 2 + ... + (k + 1) = (1 + 2 + ... + k) + (k + 1)

= k·(k+1)
2

+ (k + 1)

= (k·(k+1))+(2·(k+1))
2

= (k+2)·(k+1)
2

.
By the principle of Mathematical Induction, it follows that

1 + 2 + ... + n = n·(n+1)
2

for every positive n.�

Result 2.3. For every positive integer n,
1 + 2 + 22 + ... + 2n = 2n+1 − 1

Proof We use proof by induction.
Basis step: For n = 1 we observe that 1 + 21 = 22 − 1
Inductive step: Let
1 + 2 + 22 + ... + 2k = 2k+1 − 1
for a positive integer k.
Now we show that
1 + 2 + 22 + ... + 2k+1 = 2k+2 − 1.
We observe that
1 + 2 + 22 + ... + 2k+1 =

(
1 + 2 + 22 + ... + 2k

)
+ 2k+1

= 2k+1 − 1 + 2k+1

= 2 · 2k+1 − 1
= 2k+2 − 1.
By the principle of Mathematical Induction, it follows that

1 + 2 + 22 + ... + 2n = 2n+1 − 1
for every positive n.�
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Result 2.4. Let r ≥ 2 be an integer. Prove that 1 + r+ r2 + ...+ rn = rn+1−1
r−1

for every positive integer n.

Proof
We utilize proof by induction.
Basis step: For n = 1 we observe that
1 + r1 = r2−1

r−1

1 + r = (r+1)(r−1)
r−1

r + 1 = r + 1
1 = 1
so the equation is true.
Inductive step: Let
1 + r + r2 + ... + rk = rk+1−1

r−1

for a positive integer k.
We show that 1 + r + r2 + ... + rk+1 = rk+2−1

r−1
.

1 + r + r2 + ... + rk+1

=
(
1 + r + r2 + ... + rk

)
+ rk+1

= rk+1−1
r−1

+ rk+1

= rk+1−1+rk+1(r−1)
r−1

= rk+1−1+rk+2−rk+1

r−1

= rk+2−1
r−1

.
By the Principle of Mathematical induction, the formula 1 + r+ r2 + ...+

rn = rn+1−1
r−1

holds for every positive integer n.�
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1 Additional Examples of Induction Proofs

In this section we will use variations and generalizatin of the Principle of
Mathematical Induction to solve various types of statements.

In several cases N is not the appropriate domain, but we need to show
that an examine the truth of an open sentence P (n) in the set S = {i ∈
Z: i ≥ m} = {m,m + 1,m + 2, ...}. In these cases we utilize a generalized
form of the Principle of Mathematical Induction, that is usually referred to
by the same name.

The Principle of Mathematical Induction For a fixed integer m, let
S = {i ∈ Z: i ≥ m}.

Then the statement
∀n ∈ S, P (n): For every integer n ≥ m,P (n)

is true if
(1) P (m) is true and
(2) the statement ∀k ∈ S, P (k)→ P (k + 1) is true.

When m = 1 this principle becomes the Principle of Mathematical In-
duction that was originally described in the previous section.

1



Result 1.1. For every integer n ≥ 4, n! > 2n. (Please solve)

We now consider other applications of the Principle of Mathematical In-
duction. We can use this method of proof to prove that known properties of
two objects of a certain types hold for more objects of the same type. For
example, we know the following fundamental property of real numbers:

If a and b are real numbers such that ab = 0, then either a = 0 or b = 0.
Let’s now verify the following result:

Result 1.2. If a1, a2, ..., an are n ≥ 2 real numbers such that a1a2...an = 0 ,
then ai = 0 for some integer i with 1 ≤ i ≤ n.

Proof
We proceed by induction.
For n=2, it follows from the fundamental property of real numbers that

if a1a2 = 0, then a1 = 0, or a2 = 0.
Now we assume the following statement:
If a1, a2, ..., ak are k ≥ 2 real numbers such that a1a2...ak = 0 , then ai = 0

for some integer i with 1 ≤ i ≤ k.
We will show that if a1, a2, ..., ak+1 are real numbers such that a1a2...ak+1 =

0 , then ai = 0 for some integer i with 1 ≤ i ≤ k + 1.
Let a1, a2, ..., ak+1 be real numbers such that a1a2...ak+1 = 0.
Then a1a2...ak+1 = (a1a2...ak)ak+1 = 0. Therefore fundamental property

of real numbers it follows that either (a1a2...ak) = 0 or ak+1 = 0.
If ak+1 = 0 then we found the solution.
Otherwise if (a1a2...ak) = 0, it follows by the inductive hypothesis that

ai = 0 for some integer i with 1 ≤ i ≤ k.
In either case, ai = 0 for some integer i with 1 ≤ i ≤ k + 1.
By the Principle of Mathematical Induction the result is true.

2



Theorem 1.3. Let n be a nonnegative integer. If A is a set with |A| = n,
then the cardinality of its power set is |P(A)| = 2n.

Proof
We proceed by induction.
For n = 0, we observe that |A| = 0 is the cardinality of the empty set.

Then we observe that |P(∅)| = 1 = 20.
Next, we assume that if S is a set with |S| = k, then the cardinality of

its power set is |P(S)| = 2k, for a nonnegative integer k.
We show that the following statement is true: If A is a set with |A| = k+1,

then the cardinality of its power set is |P(A)| = 2k+1.
Let A = {a1, a2, a3, ..., ak+1} and B = {a1, a2, a3, ..., ak}. By inductive

hypothesis it follows that |B| = k and |P(B)| = 2k. These are equal to the
subsets of A that do not contain ak+1.

Now the subsets of A that contain ak+1 can be produced by the union of
elements of P(B) and {ak+1}. Therefore, the cardinality of remaining sets is
2k.

It follows that the cardinality of all subsets of A is |P(A)| = 2k + 2k =
2(2k) = 2k+1.

The result then follows by the Principle of Mathematical Induction.
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1 Sequences

The concept of sequences frequently occurs in discrete mathematics. Here a
sequence is a listing of elements of a set. A sequence can be finite or infinite.
We are more interested in infinite sequences. The elements of a sequence
typically belong to Z or to R.

An infinite sequence is denoted by a1, a2, a3, ... or by {an}. The element
a1 is called the first term of the sequence, a2 is the second term, and an is
called the nth term.

Example 1.1. (a) 1,2,3,4,... is a sequence whose nth term is n.
(b) 1,4,9,16,... is a sequence whose nth terms is n2.
(c) 1,8,27,64,... is a sequence whose nth term is n3.
Sequences (a)-(c) are polynomial sequences of the form {nk} for a fixed

integer k.
(d) 2,4,8,16,... is a sequence whose nth term is 2n.
(3) 4,7,10,13,... is a sequence whose nth term is 3n + 1.

Definition 1.1 (Geometric sequence). A geometric sequence is a sequence
in which the ratio of every two elements an and an+1 is a constant r, i.e.
an+1/an = r for each n ∈ N.

Definition 1.2 (Arithmetic sequence). An arithmetic sequence is a sequence
in which the difference between consecutive elements an and an+1 is a con-
stant r. This means that an+1 − an = r for each n ∈ N.

1



Example 1.2. Determine the nth term of the sequence {an} who first four
terms are:

a0 = −1
3
, a1 = 2

5
, a2 = −4

7
, a3 = 8

9
.

Answer
We check the sign, the numerator and denominator. A sequence gener-

ating these terms is
an = (−1)n+1 2n

2n+3
.
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1.1 Binary Strings

We now consider finite sequences. A finite sequence may also be called a
string. The number of terms of a string is called the string’s length. We
can denote a string of length n by a1, a2, ..., an, or by (a1, a2, ..., an), or by
a1a2...an, where ai belongs to a set S and 1 ≤ i ≤ n.

A specific type of strings contain binary digits. A binary digit, or bit,
is an element with values 0 or 1, so S = {0, 1}. The corresponding string
is called a binary string or a bit string. An n-bit string is a bit string of
length n. The 6-bit string (0, 1, 0, 0, 1, 0) can also be written as 0, 1, 0, 0, 1, 0,
or 010010). Bit strings are ubiquitous in digital logic and computer science
in general.

Example 1.3. There are 24 = 16 subsets of a set S with 4 elements. These
subsets can be represented by bit-strings of length 4. We first order the
elements so that S = {a1, a2, a3, a4}. Each subset can be represented by a
bit string whose i-th term is 1 if ai belongs to the subset. On the other hand
ai is 0 if ai does not belong to the subset.

For example A = {a1, a4} is represented by 1001, and B = ∅ is represented
by 0000.

1.2 Recursively Defined Sequences

An alternative definition of sequences uses a recursive description. In this
definition, one or more terms are initially defined and subsequent terms are
defined according to the initial terms.

Definition 1.3 (Recursively Defined Sequence). A sequence a1, a2, ..., an of
real numbers is said to be recursively defined if:

(1) For some fixed positive integer t, the terms a1, a2, ..., at are given.
(2) For each integer n > t an is defined in terms of one or more of

a1, a2, ..., an.
Here a1, a2, ..., at are called the initial values of {an}. The relation between

an and a1, a2, ..., at for n > t is the recurrence relation for {an}.

Example 1.4 (please solve). For X = {x1, x2, x3, x4, x5} determine
(a) which 5-bit string corresponds to each of the subsets below:
X + 1 = {x1, x4}, X2 = {x2, x4, x5}, X3 = {x3, x5}.
(b) which subset of X corresponds to each of the 5-bit strings below:
s1 = 00000, s2 = 01001, s3 = 11111.
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Example 1.5 (please solve). A sequence A1, A2, A3, ... of sets is defined
recursively by A1 = {1} and An = ((A1 ∪A2 ∪A3 ∪ ...∪An−1)−An−1)∪{n}
for n ≥ 2. Determine the sets A2, A3, A4, A5, A6.
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1 Sequences

1.1 Fibonacci Numbers

A popular recursively defined sequence results from certain positive integer
numbers is known as the Fibonacci numbers.

Example 1.1. The Fibonacci sequence F1, F2, F3, ... is defined recursively
by

Fn =

{
1 if n = 1, 2

Fn−2 + Fn−1 if n ≥ 3

The numbers F1, F2, F3, ... are called Fibonacci numbers.
We observe that
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8.
The Finbonacci numbers appear in some unexpected applications.
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Example 1.2. For every integer n ≥ 2,
Fn−1Fn+1 = F 2

n + (−1)n

Answer
We proceed by induction.
For n = 2, F1F3 = 1 · 2 = 12 + 1 = F 2

2 + (−1)2.
We assume that for k ≥ 2, Fk−1Fk+1 = F 2

k + (−1)k.
So, F 2

k = Fk−1Fk+1 − (−1)k.
We show that FkFk+2 = F 2

k+1 + (−1)k+1

FkFk+2 = Fk(Fk + Fk+1)

= F 2
k + FkFk+1

= Fk−1Fk+1 − (−1)k + FkFk+1

= (Fk−1 + Fk)Fk+1 − (−1)k

= Fk+1Fk+1 − (−1)k

= F 2
k+1 + (−1)k+1.

Therefore by the Principle of Mathematical Induction it follows that
Fn−1Fn+1 = F 2

n + (−1)n.

The Fibonacci numbers where introduced in the middle ages by Leonardo
da Pisa who was known for the leaning tower of Pisa. Leonardo da Pisa
called himself Fibonacci. He wrote the book Liber Abaci that introduced
the decimal number system to the Latin-speaking world.

The solution of the following problem stated in Liber Abaci led to the
introduction of Fibonacci numbers.

”A certain man had one pair of rabbits together in a certain enclosed
place and one wishes to know how many are created from the pair in one
year when it is the nature of them in a single month to bear a single pair
and in the second month those born to bear also.”

Example 1.3 (Please solve). For a nonnegative n, let sn be the number of
subsets of an n-element set.

(a) What are s0, s1, s2?
(b) Give a recursive definition of sn for n ≥ 0.

2



Example 1.4. For a positive integer n, let sn be the number of n-bit strings
having no three consecutive 0s.

(a) Determine s1, s2, s3.
(b) Give a recursive definition of sn, for n ≥ 1.

Answer
(a) s1: number of 1-bit strings with no three consecutive 0s.

These bit-strings are 0 and 1. All have no three consecutive 0s, so
s1 = 2.

s2: number of 2-bit strings with no three consecutive 0s.
These strings are 00, 01, 10, and 11. All have no three consecutive 0s,

so s2 = 4.
s3: number of 3-bit strings with no three consecutive 0s.
These strings are 000, 001, 010, 011, 100, 101, 110, 111. 7 out of 8

have no three consecutive 0s, so s3 = 7.
(b) For n > 3, the n-bit strings with no three consecutive 0s will end with

either a) 1, or b) 10, or c) 100.
So, sn = sn−1 + sn−2 + sn−3.

Example 1.5. Use induction to show the following for Fibonacci numbers:
F1 + F2 + F3 + ... + Fn = Fn+2 − 1 for every positive integer n.

Answer
We proceed by induction.
For n = 1, we observe that F1 = 1 and F3−1 = F1+F2−1 = 1+1−1 = 1,

so F1 = F3 − 1.
We assume that F1 + F2 + F3 + ... + Fk = Fk+2 − 1 for k ≥ 1.
We show that F1 + F2 + F3 + ... + Fk+1 = Fk+3 − 1.

F1 + F2 + F3 + ... + Fk+1 = F1 + F2 + F3 + ... + Fk + Fk+1

= Fk+2 − 1 + Fk+1

= (Fk+1 + Fk+2) − 1

= Fk+3 − 1.

By the Mathematical Principle of Induction it follows that F1 +F2 +F3 +
... + Fn = Fn+2 − 1 for every positive integer n.
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1 The Strong Principle of Mathematical In-

duction

As we mentioned there are several variations of the Principle of Mathematical
Induction.

A very useful variation is the Strong Principle of Mathematical Induction.

Definition 1.1 (Strong Principle of Mathematical Induction). The state-
ment

∀n ∈ N, P (n) : For every positive integer n, P (n)
is true if
(1) P (1) is true and
(2) the statement ∀k ∈ N, P (1) ∧ P (2) ∧ ... ∧ P (k)⇒ P (k + 1) is true.

The Strong Principle of Mathematical Induction then states that all of
the statements P (1), P (2), P (3), ... are true if we can verify that the basis
step (1) and the inductive step (2) are true.

If we use a direct proof for the inductive step, we then assume that for an
arbitrary positive integer k, the statement P (i) is true for 1 ≤ i ≤ k, which
we call the induction hypothesis, and show that P (k+1) is a true statement.

So when using the Strong Principle of Mathematical Induction, we can
assume that all of the statements P (1), P (2), ..., P (k) are true. We need to
show that P (k + 1) is true in each situation.

1



The Strong Principle of Mathematical Induction can be used to verify
that the nth term of a recursively defined sequence can be expressed in a
closed form (i.e. by a formula).

Example 1.1. A sequence a1, a2, a3, ... is defined recursively by
a1 = 1, a2 = 4 and an = 2an−1 − an−2 + 2 for n ≥ 3.

(a) Determine a3, a4 and a5.
(b) Conjecture a formula for an for each positive integer n.

Answer
(a) Using the recurrence relation,
a3 = 2a2 − a1 + 2 = 8− 1 + 2 = 9
a4 = 2a3 − a2 + 2 = 18− 4 + 2 = 16
a5 = 2a4 − a3 + 2 = 32− 9 + 2 = 25.
(b) Based on the initial values a1 and a2 and the evaluated a3, a4 and

a5, we conjecture that a formula for this sequence is an = n2 for a positive
integer n.

We show next that the above conjecture is correct.

Result 1.2. A sequence a1, a2, a3, ... is defined recursively by
a1 = 1, a2 = 4 and an = 2an−1 − an−2 + 2 for n ≥ 3.

Then an = n2 for every positive integer n.

Proof
We employ the Strong Principle of Mathematical Induction.

For n = 1 we observe that a1 = 1 = 12 so the formula holds for n = 1.

We assume that for an integer k ≥ 1, ai = i2 for 1 ≤ i ≤ k.

We now show that ak+1 = (k + 1)2.
For k = 1, a2 = 4 = 22 so the formula is true.
For k ≥ 2, k + 1 ≥ 3, so the recurrence relation becomes
ak+1 = 2ak − ak−1 + 2.
By the inductive hypothesis it follows that

2



ak+1 = 2.k2 − k − 12 + 2

= 2.k2 − k2 + 2k − 1 + 2

= k2 + 2k + 1

= (k + 1)2.

By the Strong Principle of Mathematical Induction it follows that the
above statement is true.�
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Example 1.2. Prove that the nth Fibonacci number is Fn = 1√
5
[(1+

√
5

2
)n −

(1−
√
5

2
)n] for n ≥ 1.

Proof
We proceed by induction.

For n = 1, 1√
5
[(1+

√
5

2
)1 − (1−

√
5

2
)1] = 1√

5
(2
√
5

2
) = 1 = F (1). Therefore, the

statement is true.

We assume that Fi = 1√
5
[(1+

√
5

2
)i− (1−

√
5

2
)i] for 1 ≤ i ≤ k, k ≥ 1, i, k ∈ Z.

We show that Fk+1 = 1√
5
[(1+

√
5

2
)k+1 − (1−

√
5

2
)k+1].

When k = 1,

1√
5

[(
1 +
√

5

2
)2 − (

1−
√

5

2
)2]

=
1√
5

[(
1 + 2

√
5 + 5

2
)− (

1− 2
√

5 + 5

4
)]

=
1√
5

(
1 + 2

√
5 + 5− 1 + 2

√
5− 5

4
)

=
1√
5

(
4
√

5

4
)

= 1

= F (2).

When k ≥ 2,
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Fk+1 = Fk + Fk−1

=
1√
5

[(
1 +
√

5

2
)k − (

1−
√

5

2
)k] +

1√
5

[(
1 +
√

5

2
)k−1 − (

1−
√

5

2
)k−1]

=
1√
5

[(
1 +
√

5

2
)k + (

1 +
√

5

2
)k−1 − (

1−
√

5

2
)k − (

1−
√

5

2
)k−1]

=
1√
5

[(
1 +
√

5

2
)k + (

1 +
√

5

2
)k−1 − ((

1−
√

5

2
)k + (

1−
√

5

2
)k−1)]

=
1√
5

[(
1 +
√

5

2
)k−1(

1 +
√

5

2
+ 1)− (

1−
√

5

2
)k−1(

1−
√

5

2
+ 1)]

=
1√
5

[(
1 +
√

5

2
)k−1(

1 +
√

5

2
)2 − (

1−
√

5

2
)k−1(

1−
√

5

2
)2]

=
1√
5

[(
1 +
√

5

2
)k+1 − (

1−
√

5

2
)k+1].

By the Strong Principle of Mathematical Induction it follows that the
formula is true.�
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1.1 The Strong Principle of Mathematical Induction
(general form)

Definition 1.3 (Strong Principle of Mathematical Induction). For a fixed
integer m, let

S = {i ∈ Z} : i ≥ m.
The statement

∀n ∈ S, P (n) : For every n in S, P (n)
is true if
(1) P (m) is true and
(2) the statement ∀k ∈ S, P (m) ∧ P (m + 1) ∧ ... ∧ P (k) ⇒ P (k + 1) is

true.

Result 1.4. For every integer n ≥ 2, Fn ≤ 2Fn−1.

Proof We utilize induction.

For n = 2, F2 = 1 ≤ 2 = 2.F1, so the formula is correct.

We assume that Fi ≤ 2.Fi−1 for integer i, 1 ≤ i ≤ k and k ≥ 2, k ∈ Z.

We show that Fk+1 ≤ 2.Fk.
Fk+1 = Fk + Fk−1, because k + 1 ≥ 3.
Based on the inductive hypothesis Fk ≤ 2.Fk−1 and Fk−1 ≤ 2.Fk−2. So,

Fk+1 ≤ 2.Fk−1 + 2.Fk−2 = 2.(Fk−1 + Fk−2)

= 2.Fk

Therefore Fk+1 ≤ 2.Fk.
By the Strong Principle of Mathematical Induction it follows that For

every integer n ≥ 2, Fn ≤ 2Fn−1.�
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Corollary 1.5. For every positive integer n, Fn ≤ 2n.

Proof
We proceed by induction.

For n = 1, F1 = 1 ≤ 21 = 2, so the statement is true.

We assume that Fk ≤ 2k for an integer k with k ≥ 1.

We show that Fk+1 ≤ 2k+1. Based on the previous result
Fk+1 ≤ 2.Fk ≤ 2.2k = 2k+1.

By the Principle of Mathematical Induction it follows that for every pos-
itive integer n, Fn ≤ 2n.�
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1 Relations and Functions

This chapter deals with connections between elements of two sets A and B.
Depending on the requirements of these connections we will come across the
concepts of relations and functions.

1.1 Relations

An object in one set can be related to an object in another set in several
ways. For example, an integer a can be related to an integer b if a+b is even,
or if a and b have the same parity.

We have also defined the Cartesian product A × B of two sets A and B
to be the set of all ordered pairs (a, b), where a ∈ A and b ∈ B.

Definition 1.1 (Relation). A relation R from a set A to a set B is a subset
of A × B. In addition, R is said to be s relation on A × B. If (a, b) ∈ R,
then a is said to be related to b. If (a, b) 6∈ R then a is not related to b. If
(a, b) ∈ R, then we can write a R b, whereas if (a, b) 6∈ R, we write a 6 R b.

Example 1.1. For the sets A = {0, 1} and B = {1, 2, 3}, suppose that
R = {(0, 2), (0, 3), (1, 2)}

is a relation from A to B. Thus, 0 R 2, 0 R 3 and 1 R 2. Since 1 is not
related 3 and 0 is not related to 1, we can write 1 6 R3 and 0 6 R1.

1



Example 1.2. Let N be the set of natural numbers and let N− be the set of
negative integers. A relation R from N to N− is defined by a R b if a+b ∈ N.
Let’s examine some examples of ordered pairs to see if they are related by R.

Answer
5 R -1 because 5 + (−1) = 4 ∈ N
18 R -5 because 18 + (−5) = 13 ∈ N
15 6 R -15 because 15 + (−15) = 0 6∈ N
7 R -25 because 7 + (−25) = −18 6∈ N

Definition 1.2. A relation R on a set S is a relation from S to S. That is,
R is a relation on a set S if R is a subset of S × S.

Example 1.3. We know that if a set A has n elements, then there exist 2n

subsets of A. So if a set A has 3 elements, then A × A has 9 elements and
there are 29 = 512 possible subsets of A×A therefore 512 possible relations
on S.

We list 5 out of the possible 512 relations on the set A = {x, y, z}
R1 = {(x, y), (x, z), (z, z)}
R2 = {(x, y), (y, y), (y, z)}
R3 = {(x, x), (y, y), (z, z)}
R4 = ∅

Definition 1.3. Let R be a relation defined on a nonempty set S. Then R
is

(1) reflexive if a R a for all a ∈ S; that is, if a ∈ S, then (a, a) ∈ R;
(2) symmetric if whenever a R b, then b R a for all a, b ∈ S; that is, if

(a, b) ∈ R then (b, a) ∈ R;
(3) transitive if whenever a R b and b R c, then a R c for all a, b, c ∈ S;

that is, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

We have seen that for a false statement P and any statement Q, the
implication P → Q is always true. We note here that if we have an empty
relation R, defined on a nonempty set S, then R is symmetric, because for
all a, b ∈ S (a, b) ∈ R is false. Also, the empty relation is transitive because
for all a, b, c ∈ S (a, b) ∈ R is false and (b, c) ∈ R is false. But, the empty
relation is not reflexive because for all a ∈ S, (a, a) ∈ R is false.
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Example 1.4. A relation R is defined on the set Z of integers by a R b
if a.b ≥ 0. Please examine if R possesses the reflexivity, symmetry and
transitivity properties.

Answer
Let a ∈ Z. Because a · a ≥ 0, it follows that a R a for all a ∈ Z so the

relation is reflexive.
Now let a, b ∈ Z. Assume that a · b ≥ 0. Because a · b = b · a, b · b ≥ 0.

Therefore the relation R is symmetric.
Finally, let a, b, c ∈ Z. For example, a = 3, b = 0 and c = −5. Then

a · b ≥ 0 and b · c ≥ 0, but a · b < 0, so R is not transitive.
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1 Equivalence Relations

Definition 1.1 (Equivalence Relation). A relation R on a nonempty set is
an equivalence relation if R is reflexive, symmetric and transitive.

Example 1.1. A relation R is defined on N×N by (a, b) R (c, d) if ad = bc.
Show that R is an equivalence relation.

Proof
Let (a, b) ∈ N× N. Because ab = ba, (a, b) R (a, b), so R is reflexive.

Let (a, b), (c, d) ∈ N× N and (a, b) R (c, d). Therefore ad = bc.
Because ad = da and bc = cb, it follows that cb = da.
Therefore (c, d) R (a, b), which implies that R is symmetric.

Let (a, b), (c, d), (e, f) ∈ N×N such that (a, b) R (c, d) and (c, d) R (e, f).
This means that ad = bc and cf = de.

Because ad = bc we have that c = ad
b

and cf = de becomes ad
b
f = de ⇒

af = be.

This means that (a, b) R (e, f), therefore R is transitive.
Because R is reflexive, symmetric and transitive it follows that R is an

equivalence relation.�
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1.1 Equivalence Classes

Definition 1.2 (Equivalence Class). Let R be an equivalence relation on set
A. For a ∈ A, the equivalence class [a] is defined by

[a] = {x ∈ A : x R a}.

So for an equivalence relation R on a set A and an element a ∈ A, the
equivalence class is the set of all elements of A that are related to a by R.

Example 1.2. A relation R is defined on the Cartesian product N×N such
that (a, b) R (c, d) if ad = bc. Since R is an equivalence relation, there is an
equivalence class associated with each element of N× N. For example

[(2, 3)] = {(x, y) ∈ N× N : (x, y)R(2, 3)}
= {(x, y) ∈ N× N : 3x = 2y}
= {(4, 6), (6, 9), (8, 12), (10, 15), ...}

We can generalize this as follows: the equivalence class of [a, b] is the set
of all ordered pairs (c, d) such that c

d
= a

b
.

Example 1.3. A relation R is defined on Z by a R b if a + b is even.
(a) Show that R is an equivalence relation.
(b) Describe the equivalence classes [0], [1], [−7], 6.

(a) Proof
Let a ∈ Z. Then a+a = 2a, which is an even integer. Therefore (a, a) ∈ R

and R is reflexive.

Let a, b ∈ Z and (a, b) ∈ R. This means that a + b is even. Because
a + b = b + a, b + a is even. Therefore, (b, a) ∈ R and R is symmetric.

We assume that a, b, c ∈ Z and (a, b) ∈ R and (b, c) ∈ R. This means
that a + b is even and b + c is even.

Therefore, there exist x, y ∈ Z such that a + b = 2x and b + c = 2y.
We have that a + b + b + c = 2x + 2y ⇒ a + c = 2x + 2y − 2b⇒ a + c =

2(x + y − b).
Because of fundamental integer properties x+ y− b is an integer, so a+ c

is even. This means that (a, c) ∈ R, so R is transitive.
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Because R is reflexive, symmetric and transitive, R is an equivalence
relation.�

(b) The resulting equivalence classes are

[0] = {k ∈ Z : (k, 0) ∈ R}
= {k ∈ Z : k + 0 is even}
= {...,−4,−2, 0, 2, 4, ...}

[1] = {k ∈ Z : (k, 1) ∈ R}
= {k ∈ Z : k + 1 is even}
= {...,−3,−1, 1, 3, ...}

[−7] = {k ∈ Z : (k,−7) ∈ R}
= {k ∈ Z : k − 7 is even}
= {...,−3,−1, 1, 3, ...}

[6] = {k ∈ Z : (k, 6) ∈ R}
= {k ∈ Z : k + 6 is even}
= {...,−4,−2, 0, 2, 4, ...}

We observe that [0] = [6] and [1] = [−7].
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Theorem 1.3. Let R be an equivalence relation on a nonempty set A and
let a and b be elements of A. Then

[a] = [b] if and only if a R b.

Proof This is a biconditional so we will prove that i) if a R b, then
[a] = [b] and ii) if [a] = [b], then a R b.

i) Let a R b. To verify that [a] = [b] we need to show that [a] ⊆ [b] and
[b] ⊆ [a].

First let x ∈ [a]. Then (x, a) ∈ R.
Because a R b, (a, b) ∈ R.
So, (x, a) ∈ R and (a, b) ∈ R, and by the transitivity property it follows

that (x, b) ∈ R, which means that x ∈ [b].
Therefore [a] ⊆ [b].

Now we assume that x ∈ [b] so (x, b) ∈ R.
Because a R b, (a, b) ∈ R and (b, a) ∈ R.
Therefore (x, b) ∈ R and (b, a) ∈ R, so by the transitivity property it

follows that (x, a) ∈ R.
This means that x ∈ [a] and because we assume that x ∈ [b], then [b] ⊆ [a].
Because [a] ⊆ [b] and [b] ⊆ [a], we have that [a] = [b].

ii) Let [a] = [b]. If x ∈ [a], then x ∈ [b], which means that (x, a) ∈ R
and (x, b) ∈ R. Because R is symmetric (a, x) ∈ R and by the transitivity
property it follows that (a, b) ∈ R, that is a R b.�

Theorem 1.4. Let R be an equivalence relation defined on a nonempty set
A. If P is the set of all distinct equivalence classes of A resulting from R,
then P is a partition of A.

Proof We have seen that each equivalence class is nonempty, and that
each element of A belongs to an equivalence class. We need to show that the
equivalence classes are disjoint, that is distinct equivalence classes have no
common elements.

We use proof by contradiction. We assume two distinct equivalence
classes [a] and [b] that have a common element x. So, (x, a) ∈ R and
(x, b) ∈ R. By the symmetry property we have that (a, x) ∈ R. Because
(a, x) ∈ R and (x, b) ∈ R, by the transitivity property it follows that
(a, b) ∈ R. By the previous theorem it follows that [a] = [b], which is a
contradiction. Therefore [a] and [b] are disjoint and P is a partition of A.�
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Corollary 1.5. Let R be an equivalence relation defined on a nonepty set
A. If [a] and [b] are equivalence classes of A resulting from R, then either
[a] = [b] or [a] ∩ [b] = ∅.

Based on the previous result, if a R b, then [a] = [b]. On the contrary, if
a 6 R b, then [a] ∩ [b] = ∅. Also, if [a] ∩ [b] 6= ∅ , then [a] = [b].

Example 1.4. A relation R is defined on Z by a R b if 3a− 7b is even.
(a) Prove that R is an equivalence relation.
(b) Describe the distinct equivalence classes resulting from R and show

that the set of all equivalent classes forms a partition of Z.

(a) Proof.
Let x ∈ Z.
We observe that 3x− 7x = −4x = 2(−2x), which is an even number, so

(x, x) ∈ R. Hence R is reflexive.

Now let x, y ∈ Z and (x, y) ∈ R.
Then 3x− 7y is even, so
3x− 7y = 2k ⇒ 3x = 7y + 2k, k ∈ Z.
Then 3y − 7x = 3y − 4x − 3x = 3y − 4x − 7y − 2k = 4x − 4y − 2k =

2(2x−2y−k). Because 2x−2y−k is an integer, 3y−7x = 2k is even, hence
(y, x) ∈ R and R is symmetric.

Finally let x, y, z ∈ Z such that (x, y) ∈ R and (y, z) ∈ R.
This means that 3x − 7y is even and 3y − 7z is even. So, 3x − 7y = 2k

and 3y − 7z = 2l for some k, l ∈ Z.
Then, 3x− 7y+ 3y− 7z = 2k+ 2l⇒ 3x− 7z = 2k+ 2l+ 4y ⇒ 3x− 7z =

2(k + l + 2y).
Because k + l + 2y is an integer, 3x − 7z is even. Hence, (x, z) ∈ R and

the transitivity property holds true.

Because of the reflexivity, symmetry and transitivity properties it follows
that R is an equivalence relation.�

(b) Let’s begin with the class [0].

[0] = {a ∈ Z : 3a is even}
= {...,−4,−2, 0, 2, 4, ...}.
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Because the equivalence classes form a partition of Z, then we expect to
generate another class by selecting an element that does not belong to [0].
So we choose [1].

[1] = {b ∈ Z : 3b− 7 is even}
= {...,−3,−1, 1, 3, ...}.

We observe that {[0], [1]} is a partition of Z.�
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1 Functions

Definition 1.1 (Function). Let A and B be two nonempty sets. A function
from A to B is a relation from A to B that associates with each element of A
a unique element of B. A function f from A to B is denoted by f : A→ B.

A function f : A → B can be described as a subset of A × B such that
for every element a of A there is exactly one ordered pair in f in which a is
the first coordinate.

Therefore, if g is a relation from set A to set B and either
(a) there is an element a′ of A that is not the first coordinate of any

ordered pair in g or
(b) there are more than one ordered pairs in g of which an element a′′ is

the first coordinate
then g is not a function from A to B.

Example 1.1. Let f be a function from a set A = {a1, a2, a3, a4} to a set
B = {b1, b2, b3} that assigns

• to a1 element b3

• to a2 element b1

• to a3 element b2

• to a4 element b1

1



Therefore f consists of the following ordered pairs:
f = {(a1, b3), (a2, b1), (a3, b2), (a4, b1)}.�

Now we introduce some function terminology. Let f : A→ B and b ∈ B
a unique element assigned to a ∈ A. Then we write b = f(a) and say that b
is f of a and that b is the image of a under f . In the previous example b3 is
the image of a1 under f .

Definition 1.2. If f : A→ B is a function from a set A to a set B, then A
is called the domain of f and B is the codomain of f . The range f(A) is the
set of images of the elements of A, namely

f(A) = {f(a) : a ∈ A}.

For the function f of the previous example the domain of f is A =
{a1, a2, a3, a4} and the codomain of f is B = {b1, b2, b3}. The range of f is
{b1, b2, b3}.

Definition 1.3 (image). For a function f from a set A to a set B and a
subset X of A, the image of X under f is the set

f(X) = {f(x) : x ∈ X}.

If a set X is X ⊆ A, then f(X) ⊆ B. Also, if X = A then f(X) = f(A)
that is the range of f . If X = {a2, a4}, then f(X) = {b1}.
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1.1 Representations of Functions

We often use diagrams to represent functions. Arrows connect the elements
between A and B.

Example 1.2. For each real number x, let f(x) denote any real number y
such that (x, y) lies on the circle x2 + y2 = 25. Is f a function from R to R?

Answer f is not a function from R to R. First let’s consider x = 7.
Then there is no coordinate y such that 72 + y2 = 25.

Also, let x = 3. Then 32 + y2 = 25, y2 = 25− 9, y2 = 16, so y = ±4 and
f is not a function because for a single x we have two images.�

Example 1.3. Let A = {a, b} and B = {1, 3}. Determine all functions from
A to B.

Answer The functions are
f1 = {(a, 1), (b, 1)}
f2 = {(a, 1), (b, 3)}
f3 = {(a, 3), (b, 1)}
f4 = {(a, 3), (b, 3)}

For two nonempty sets A and B of real numbers and a function f : A→ B
the graph of f is the set of points (x, y) such that y = f(x) when x ∈ A and
y ∈ B.
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1.2 Common Functions

1.2.1 Identity Function

For a nonempty set A, the function f : A → A defined by f(a) = a,∀a ∈ A
is called the identity function.

For example, given the set A = {1, 2}, the range of the identity function
is f(A) = {(1, 1), (2, 2)}.

1.2.2 Absolute Value Function

The absolute value function is defined as the function f : A→ A where

f(x) = |x|

{
x, if x ≥ 0

−x, if x < 0.

1.2.3 Ceiling Function

For a real number r the ceiling of r is the nearest integer dre that is greater
than or equal to r.

The function f : R→ Z defined by f(x) = dxe is the ceiling function.

1.2.4 Floor Function

For a real number r the floor of r is the nearest integer brc that is greater
than or equal to r.

The function f : R→ Z defined by f(x) = bxc is the floor function.

1.2.5 Logarithmic and Exponential Functions

Let a ∈ R+, such that a 6= 1. If b ∈ R and ab = c then loga c = b. Therefore,
loga c = b iff ab = c.

We note that c ∈ R+. Also, a is called the base.
Well known functions in calculus and computer science are

y = loge x = iff x = ey.
y = log2 x = b iff x = 2y.

Example 1.4. The function f : R → R+ defined by f(x) = 2x is an expo-
nential function.

The function f : R+ → R defined by f(x) = loge(x) = ln(x) is the natural
logarithmic function.
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1.3 Composition of Functions

Definition 1.4 (Composition). Let A, B and C be sets and suppose that
f : A → B and g : B → C are two functions. The composition g ◦ f of f
and g is the function from A to C defined by

(g ◦ f)(a) = g(f(a)) for a ∈ A.

Example 1.5. Let f : R → R and g : R → R, where f(x) = sinx and
g(x) = x2. Determine (f ◦ g)(x) and (g ◦ f)(x).

Answer Because the domain and codomain are the same set, both (f ◦
g)(x) and (g ◦ f)(x) are defined. So for x ∈ R we have

(f ◦ g)(x) = f(g(x)) = sin(x2).
(g ◦ f)(x) = g(f(x)) = (sin x)2 = sin2 x.

Example 1.6. Let A = {1, 2, 3}, B = {a, b, c, d} and C = {x, y, z} and let
f : A→ B and g : B → C be functions where

f = {(1, c), (2, a), (3, b)} and g = {(a, x), (b, z), (c, x), (d, z)}.
Find g ◦ f .

Answer We have to find the ordered pairs (a, g(f(a))),∀a ∈ A. Therefore
(g ◦ f)(1) = g(f(1)) = g(c) = x
(g ◦ f)(2) = g(f(2)) = g(a) = x
(g ◦ f)(3) = g(f(3)) = g(b) = z.
So g ◦ f = {(1, x), (2, x), (3, z)}.�
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1 Surjective, Injective, Bijective and Inverse

Functions

This section deals with functions from a set A to a set B that satisfy one or
both of the following properties

• each element of B is the image of at most one element of A

• each element of B is the image of at least one element of A

These properties are encountered often so it is useful to become familiar
with such functions.

1.1 One-to-one Functions

Definition 1.1. For two nonempty sets A and B, a function f : A → B is
said to be one-to-one if every two distinct elements of A have distinct images
in B, that is, if a, b ∈ A and a 6= b, then f(a) 6= f(b).

An one-to-one function is referred to as an injective function.

Example 1.1. For two nonempty finite sets A and B , let f : A→ B be the
identity function, that is, f(a) = a for every element a ∈ A.

The function f is one-to-one because by definition if a 6= b, a, b ∈ A, then
f(a) 6= f(b).

1



Let f be a function f : A → B, where A and B are finite sets and f is
an one-to-one function.

Then different elements in A will have different images in B. Therefore,
if A has N elements, |A| = N , then B has to have at least N elements,
|B| ≥ N . Then we have,

If f : A→ B is one-to-one, then we must have |B| ≥ |A|.
The contrapositive of this is

If |B| < |A|, then there is no one-to-one function f , f : A→ B.

Sometimes, it is more straightforward to show that a function is one-to-
one using the contrapositive of the definition, that is,

A function f : A→ B is one-to-one, if for a, b ∈ A and f(a) = f(b), then a = b.

Result 1.2. Let f : R→ R be a function defined by f(x) = 5x−3 for x ∈ R.
Then f is one-to-one.

Proof. Let a, b ∈ A and f(a) = f(b). Then
5a− 3 = 5b− 3
5a = 5b
a = b.

Based on the previous technique, we can show that a function is not
one-to-one by finding distinct elements a and b such that a 6= b, for which
f(a) = f(b).

Example 1.2. Show that the functions are not one-to-one:
(a) f : R→ R such that f(x) = x2 + 1 for x ∈ R
(b) g : Z→ Z such that g(x) = dn/2e for n ∈ Z.

Answer
(a) For a = −3 and b = 3, that is a 6= b, f(a) = 10 and f(b) = 10,

f(a) = f(b). So f is not one-to-one.
(b) For c = 3 and d = 4, that is c 6= d, f(c) = 2 and f(d) = 2, that is

f(c) = f(d), therefore g is not one-to-one.
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1.2 Onto Functions

Definition 1.3. Let A and B be two nonempty sets. A function f : A→ B
is called onto if every element of B is the image of some element of A.

So, a function f : A → B is onto, if every element b ∈ B is an image of
an element a ∈ A, that is, b = f(a). Therefore, the codomain B is equal to
the range of A, B = f(A). This type of function is also called a surjective
function.

So, a function f : A → B is onto if every element b ∈ B is an image of
an element a ∈ A. Therefore if A has N elements, then B has at most N
elements. It follows that

If f : A→ B is onto, then |B| ≤ |A|.
The contrapositive of this is

If |B| > |A| , then there is no onto function f : A→ B.

Result 1.4. The function f : R→ R defined by f(x) = 4x− 9 for x ∈ R is
onto.

Proof. We begin with an arbitrary number r ∈ R. We need to show that r
is the image of a real number x under f . To find this number we solve for x

4x− 9 = r

4x = r + 9

x =
r + 9

4

Next, we evaluate f( r+9
4

)

f(
r + 9

4
) = 4(

r + 9

4
)− 9

= r + 9− 9

= r

Therefore r is the image of r+9
4

and f is onto.
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1.3 Bijective Functions

Definition 1.5. A function that is one-to-one and onto is called a bijective
function, or one-to-one correspondence.

Result 1.6. The function f : R+ → R+ defined by f(x) =
√
x is bijective.

Proof. We need to show that f is one-to-one and onto.

First, we show that f is one-to-one. Let a, b ∈ R+ such that f(a) = f(b).
Then

√
a =
√
b, (
√
a)2 = (

√
b)2, a = b. Therefore, f is one-to-one.

Next, we show that f is onto. Let r be an arbitrary number r ∈ R+.
Then, let x = r2, so x ∈ R+. We observe that f(r2) =

√
r2 = r, therefore f

is onto.

Because f is one-to-one and onto, f is bijective.

For a nonempty set A, a bijective function from A to A is also called a
permutation of A.
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1.4 Compositions of Bijective Functions

Theorem 1.7. Let A, B and C be nonempty sets and let f : A → B and
g : B → C be two functions.

(a) If f and g are one-to-one, then so is g ◦ f .
(b) If f and g are onto, then so is g ◦ f .

Proof. (a) We assume that f : A → B and g : B → C are one-to-one
functions. Then, let a, b ∈ A, such that (g ◦ f)(a) = (g ◦ f)(b). We have that

(g ◦ f)(a) = (g ◦ f)(b)

g(f(a)) = g(f(b))

Because g is one-to-one, f(a) = f(b). In addition,f is one-to-one, there-
fore a = b. It follows that g ◦ f is one-to-one.

(b) We assume that f : A→ B and g : B → C are onto. Let an arbitrary
c ∈ C. We need to show that there exists some element a ∈ A such that
(g ◦ f)(a) = c.

Because g is onto, there exists an element b ∈ B such that g(b) = c.
In addition, because f is onto, there is an element a ∈ A such that

f(a) = b.
It follows that

c = g(b) = g(f(a)) = (g ◦ f)(a),
that is, g ◦ f is onto.

Because g ◦ f is one-to-one and onto it follows that g ◦ f is bijective.

Corollary 1.8. Let A, B and C be nonempty sets and let f : A → B and
g : B → C be two functions. If f and g are bijective, then so is g ◦ f .
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1.5 Inverse Functions

Let a bijective function f : A → B and (a, b) ∈ f an arbitrary ordered pair
such that a ∈ A and b ∈ B. The inverse function of f denoted by f−1 is
obtained from f by replacing the ordered pair (a, b) with (b, a).

Theorem 1.9. Let A and B be nonempty sets. A function f : A → B has
an inverse function f−1 : B → A if and only if f is bijective. Moreover, if f
is bijective, then so is f−1.

Example 1.3. The function f : R→ R defined by f(x) = x7 − 4 for x ∈ R
is known to be bijective. Determine f−1 for x ∈ R.

Answer
Let y ∈ R, such that y = x7 − 4. In f−1 the image of y is x = f−1(y).

Then we have that

y = x7 − 4

x7 = y + 4

x = (y + 4)1/7

We observe that x is the image of y under (y + 4)1/7. Hence, for x ∈ R
the image of x under f−1 is (x + 4)1/7. It follows that f−1(x) = (x + 4)1/7.

Theorem 1.10. For nonempty sets A and B. let f : A → B be a bijective
function. Then

(a) f−1 ◦ f is the identity function on A and
(b) f ◦ f−1 is the identity function on B.
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1 Cardinalities of Sets

1.1 Sets Having the Same Cardinality

Definition 1.1. Two nonempty sets A and B (finite or infinite) are defined
to have the same cardinality, written |A| = |B|, if there exists a bijective
function from A to B.

This definition is expected for finite sets but leads to interesting observa-
tions for infinite sets.

Assuming two infinite sets A and B with equal cardinalities, that is |A| =
|B|, we observe that there is a bijective function f : A → B. Because f is
bijective, there exists an inverse function f−1 : B → A that is also bijective.
So, to show that two infinite sets have the same cardinality we need to
establish the existence of a bijective function either from A to B, or from B
to A.

1.2 Denumerable Sets

Definition 1.2. A set A is called denumerable if |A| = |N|.

So a set A is denumerable if there exists a bijective function from A to N
or from N to A. The set of natural numbers N is denumerable because the
identity function is bijective.
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Result 1.3. The set of positive even numbers is denumerable.

Solution
Consider the function f : N → A, where A is the set of positive even

integers, defined by f(n) = 2n for n ∈ N. We need to show that f is one-to-
one and onto, therefore bijective, to establish that A is denumerable.

First, we assume two positive integers a, b, such that f(a) = f(b), that
is, 2a = 2b. This leads to a = b, hence the function is one-to-one.

Next, we assume an arbitrary positive even integer r, which can be written
as r = 2k, k ∈ N. Therefore r = f(k), thus f is onto.

We see that f : N → A is bijective, therefore |A| = |N|, and A is denu-
merable.

Theorem 1.4. The function f : N→ Z defined by
f(n) = (−1)nbn/2c

for each n ∈ N is bijective.

Proof. (i) To show that f is one-to-one we assume that f(a) = f(b) and show
that a = b. We divide the co-domain into three cases.

(a) Let f(a) = f(b) = 0.
Then a = b = 1, so the function is one-to-one at n = 1.

(b) Let f(a) = f(b) > 0.
Then a and b are both even, that is a = 2m, b = 2n, m,n ∈ N.
Then, f(a) = m and f(b) = n.
Because f(a) = f(b), we have that m = n, therefore, a = b.

(c) Let f(a) = f(b) < 0. Then a and b are both odd, that is, a = 2m+ 1,
b = 2n + 1, m,n ∈ N.

(ii) Next, we show that f is onto.
Let k ∈ Z.
If k > 0, then f(2k) = k.
If k ≤ 0, then f(−2k + 1) = k.
Therefore f is onto.

Corollary 1.5. The set of integers is denumerable.
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We showed that |N| = |Z|. This may seem counter-intuitive but when we
deal with cardinalities we need to rely on definitions.

Theorem 1.6. The set of positive rational numbers is denumerable.

Please study the proof in Chartrand and Zhang textbook.

Theorem 1.7. The set Q of rational numbers is denumerable.

Proof. According to the previous theorem, Q+ is denumerable, so there is a
bijective function f : N → Q+. If qn denotes the image of n under f , then
Q+ = {q1, q2, q3, ...}, so Q can be defined by Q = {0, q1,−q1, q2,−q2, q3,−q3, ...}.

We can define a bijective function g : N→ Q, as follows
1 → 0
2 → q1
3 → −q1
4 → q2
5 → −q2
.
.
.
Therefore |N| = |Q|, which means that Q is denumerable.

At this point we should note the following observation:
A set A is denumerable if and only if it is possible to list the elements of

A as a1, a2, a3, ..., that is, there is an infinite sequence {an} in which every
element of A appears exactly once.

Theorem 1.8. Every infinite subset of a denumerable set is denumerable.

Theorem 1.9. The closed interval [0, 1] of real numbers is not denumerable.

Please study the proof in Chartrand and Zhang textbook.
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0.1 Countable and Uncountable Sets

Definition 0.1. A set that is either finite or denumerable is called countable.
A denumerable set is also called coutably infinite. A set that is not countable
is called uncountable.

Therefore {1, 2, 3},N,Z,Q are countable, but [0, 1] is uncountable.

Theorem 0.2. Every set that contains an uncountable subset is itself un-
countable.

Proof. Assume that there is a countable set A that contains an uncountable
set B.

Because B is uncountable, B is infinite.
Because B ⊆ A, A is also infinite.
We observe that A is infinite and countable, therefore denumerable.
According to a theorem of the previous section any infinite subset of a

denumerable set is also denumerable, therefore B is also denumerable.
This is a contradiction because we assumed that B is uncountable.
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We showed before that [0, 1] is uncountable. As a consequence we have
the following corollary.

Corollary 0.3. The set R of real numbers is uncountable.

The set C of complex numbers contains the set R of real numbers, that
is R ⊆ C. According to the previous theorem we conclude the following.

Corollary 0.4. The set C of complex numbers is uncountable.

Theorem 0.5. If A and B are disjoint denumerable sets, then A ∪ B is
denumerable.

Proof. Sets A and B are denumerable, therefore they can be expressed as
A = {a1, a2, ...} and B = {b1, b2, b3, ...}.

We can define a function f : N→ A ∪B as follows
1 2 3 4 5 ...
a1 b1 a2 b2 a3 ...

Because f is bijective, then A ∪B is denumerable.

Theorem 0.6. The set I of irrational numbers is uncountable.

Proof. Let’s assume that I is countable.
Because Q is countable, Q∪I is countable according to previous theorem.
Because R = Q∪ I, it follows that the set of real numbers R is countable.
This contradicts our previous corollary, so I must be uncountable.

We have reviewed methods for investigating the equality between cardi-
nalities of two sets A and B. Using our function properties we can investigate
inequalities between sets.

For example, for two nonempty sets A and B we showed that |A| ≤ |B|,
if there is an one-to-one function f : A→ B.

Furthermore, for two nonempty sets A and B we showed that |A| = |B|,
if there exists a bijective function f : A→ B.

By definition |A| < |B| means that A ⊆ B and A 6= B. Therefore
|A| < |B|, if there is a function f : A → B that is one-to-one but not
bijective.

For example, if A = {a, b, c} and B = {w, x, y, z}, then |A| < |B|.
Following the function properties, we can also show that |Z| < |R|.
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Theorem 0.7. Every set has a smaller cardinality than its power set, that
is,

|A| < |P(A)|
for every set A.

Please study the proof in Chartrand and Zhang’s textbook.

Based on the previous theorem we observe the following.

Corollary 0.8. There is no set of largest cardinality.
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1 Integers

The branch of mathematics that deals with properties of integers has been
traditionally called number theory.

In this chapter we will review the fundamentals of number theory.
Number theory has practical importance as it is linked with specific topics

of computer science. One such topic is cryptography.

1.1 Divisibility Properties

1.1.1 Terminology

For integers a and b with a 6= 0, we say that a divides b if b = ac for some
integer c. We indicate this by writing a | b.

Therefore an integer n is even if and only if 2 | n.
If a | b then a is called a factor or divisor of b, and b is called a multiple

of a.
For any two given integers a and b a | b is a statement. For example 2 | 5

is a false statement, while 2 | 6 is a true statement.
If a does not divide b, we write a - b.

We will prove some divisibility properties of integers next. We note that
to show that a | b then we need to show that there is an integer c such that
b = ac. More frequently used proof methods in such problems are the direct
proof and proof by induction.
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Theorem 1.1. Let a, b and c be integers with a 6= 0. If a | b and a | c, then
a | (b + c).

Proof. Assume that a | b and a | c, that is b = da and c = ea for some
d, e ∈ Z. Then b + c = da + ea = (d + e)a.

Because d + e ∈ Z it follows that a | b + c.

Theorem 1.2. Let a and b be integers with a 6= 0. If a | b, then a | bx for
every integer x.

Proof. Let a | b for a, b ∈ Z and a 6= 0. Then b = ra for some integer r.
We multiply both sides with an integer x and get bx = xra = (xr)a.

Because xr ∈ Z this can be written as a | bx.

Theorem 1.3. Let a and b be integers with a 6= 0. If a | b and a | c, then
a | (bx + cy) for every two integers x and y.

Proof. This can be considered to be a generalization of the previous two
theorems.

Let a | b and a | c with a 6= 0. It follows that b = ra and c = sa for some
r, s ∈ Z.

Then we have that bx = rax and cy = say for x, y ∈ Z.
Next, we have that bx + cy = rax + say → bx + cy = (rx + sy)a.
Because rx + sy is an integer it follows that a | bx + cy.

Theorem 1.4. Let a and b be integers with a 6= 0 and b 6= 0. If a | b and
b | c, then a | c.

Proof. We assume that for two integers a, b with a 6= 0 and b 6= 0, a | b and
b | c.

This means that b = ra and c = sb for some integers r, s.
Therefore c = sra = (sr)a and because sr is an integer, it follows that

a | c.
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Result 1.5. For every nonnegative integer n,
3 | (n3 − n).

Proof. We proceed by induction.

For n = 0, we observe that 03 − 0 = 0, thus 3 | 0.

We assume that 3 | (k3 − k) for k ≥ 0.

We show that 3 | (k + 1)3 − (k + 1).

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= k3 + 3k2 + 2k

= (k3 − k) + 3k2 + 3k

= (k3 − k) + 3(k2 + k).

Because 3 | (k3 − k), we have that k3 − k = 3s for s ∈ Z.
Therefore

(k + 1)3 − (k + 1) = 3s + 3(k2 + k)

= 3(k2 + k + s).

Based on fundamental properties of integers it follows that k2 + k + s is
an integer, thus 3 | (k + 1)3 − (k + 1).

By the principle of mathematical induction it follows that 3 | (n3−n).

3



Result 1.6. For every nonnegative integer n,
4 | (5n − 1).

Proof. We proceed by induction.

For n = 0, we observe that 50 − 1 = 1− 1 = 0 and 4 | 0.

Next, we assume that 4 | (5k − 1) for k ∈ Z with k ≥ 0.

We show that 4 | (5k+1 − 1). We have that 5k+1 − 1 = 5k5− 1. Because
4 | (5k − 1), it follows that 5k − 1 = 4r for some r ∈ Z. Thus 5k = 4r + 1.
Then

5k+1 − 1 = 5k5− 1 = (4r + 1)5− 1

= 20r + 5− 1

= 20r + 4

= 4(5r + 1).

Since 5r + 1 is an integer, it follows that 4 | (5k+1 − 1).

By the principle of mathematical induction it follows that 4 | (5n − 1).
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1 Primes

Definition 1.1. A prime is an integer p ≥ 2 whose only positive integer
divisors are 1 and p.

Some prime numbers are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

1.1 The Fundamental Theorem of Arithmetic

Theorem 1.2 (The Fundamental Theorem of Arithmetic). Every integer
n ≥ 2 is either prime or can be expressed as a product of (not necessarily
distinct) primes, that is,

n = p1p2...pk,
where p1, p2, ..., pk are primes. This fatorization is unique except possibly

for the order in which the primes appear.

Example 1.1.

In some cases we can check if a prime p divides an integer n.

• 2 divides n only if n is even. The last digit of an even number must be
even.

1



• 4 = 22 divides n if the last two digits of n are divided by 4. For example,
4 | 6912 because 4 | 12.

• 3 divides an integer n if and only if 3 divides the sum of the digits of
n. For example 3 | 324 because 3 | (3 + 2 + 4).

• 9 = 32 divides n if and only if 9 divides the sum of the digits of n.

• 5 divides n if the last digit of n is 5 or 0.

• There is a method for finding if an integer n can be divided by 11. Let a
the sum of alternating digits of n, and b the sum of the remaining digits.
Then 11 | n if and only if 11 | (a − b). For example, 11 | 9, 775, 887
because 11 | ((9 + 7 + 8 + 7)− (7 + 5 + 8)), 11 | (31− 20).

Definition 1.3. An integer n ≥ 2 that is not prime is called a composite
number (or simply composite).

Theorem 1.4. An integer n ≥ 2 is composite if and only if there exist
integers a and b with 1 < a < n and 1 < b < n such that n = ab.

Corollary 1.5. If n is a composite number, then n has a prime factor p such
that p ≤

√
n.

Proof. Let n be a composite number. Then according to theorem 1.4 n = ab
for some integers a, b with 1 < a < n and 1 < b < n. Suppose that a < b.
Then a2 < ab = n, thus a <

√
n. Because a ≥ 2 according to theorem 1.2

there is some prime number p such that p | a and so p ≤ a <
√
n. According

to previously proved theorem p | ab, that is p | n.

We can use this corollary to find out if an integer is a prime.

Example 1.2. Show that 103 is a prime.

Answer We check if there are any primes lower than
√

103 that divide
103. We observe that 10 <

√
103 < 11, so we check the primes 2, 3, 5, 7. We

observe that none of them is a factor of 11, therefore 103 is a prime number.
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1.2 There are Infinitely Many Primes

Theorem 1.6. There are infinitely many primes.

Proof. We will use proof by contradiction.
We assume that there is a finite number of primes, p1, p2, ..., pk.
Let n = p1p2...pk + 1. Because n is greater than each prime, n must be

composite. By the fundamental theorem of arithmetic, at least one prime
must divide n say pj | n. Therefore n = pjr for some integer r. That means

p1p2...pk + 1 = pjr

p1p2...pj−1pjpj+1...pk + 1 = pjr

1 = pjr − p1p2...pj−1pjpj+1...pk + 1

1 = pj(r − p1p2...pj−1pj+1...pk + 1)

We observe that r − p1p2...pj−1pj+1...pk + 1 is an integer, hence pj | 1.
This is a contradiction because a prime number is by definition greater than
2.

Theorem 1.7 (The Prime Number Theorem). The number π(n) is approx-
imately equal to n/ lnn. More specifically

limn→∞
π(n)
n/ lnn

= 1.

3



1.3 Unsolved Problems Involving Primes

1. Two positive integers p and p + 2 are called twin primes if they are
both primes, for example, 5 and 7 are twin primes. The two primes
conjecture is that there are infinitely many twin primes.

2. Goldbach’s Conjecture: Every even integer that is 4 or more can be
expressed by the sum of two primes.

3. Observe that the following Fibonacci numbers are primes: 2, 3, 5, 13.
Are there infinitely many prime Fibonacci numbers?
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1 The Division Algorithm

Theorem 1.1 (The Division Algorithm). For every two integers m and n >
0, there exist unique integers q and r such that

m = nq + r, where 0 ≤ r < n.

The integer q is called the quotient produced when dividing m by n, and
r is called the remainder of the division with values 0, 1, ...n− 1.

For example for m = 22 and n = 5, 22 = 4.5 + 2, therefore q = 4 and
r = 2.

Example 1.1. For the following pairs of integers m,n find the quotient and
remainder, when m is divided by n. Then write m = nq + r.

a) m = 59, n = 7
b) m = −58, n = 7

Answer
a) q = 8, r = 3, 59 = 7.8 + 3
b) q = −9, r = 5, −58 = 7.(−9) + 5.

We note here that when the remainder is 0, then m = nq + 0 can also be
expressed as n | m. We have the following

If m = nq + r and 1 ≤ r ≤ n− 1 then n - m.
We also observe that we can use the floor function to express the quotient

q and remainder r:

1



If m = nq + r with 0 ≤ r ≤ n− 1, then
q = bm

n
c and r = m− nbm

n
c

Example 1.2. For the following pairs of integers m,n, find bm
n
c and m −

nbm
n
c.

a) m = 18, n = 7
b) m = −18, n = 7.

Answer
a) bm

n
c = b18/7c = 2, m− nbm

n
c = 18− 7.2 = 4

b) bm
n
c = b−18/7c = −3, m− nbm

n
c = −18− 7.(−3) = 3.

In the previous exercise we evaluated the quotient and remainder of divi-
sions. In computer terminology the quotient may be symbolized by div and
the remainder may be symbolized by mod.

That is, if m = nq + r, then m div n = q and m mod n = r.

Example 1.3. Determine m div n and m mod n for the following pairs of
integers m,n.

a) m = 75, n = 12
b) m = −36, n = 5

Answer
a) 75 div 12 = 6, 75 mod 12 = 3.
b) −36 div 5 = −8, −36 mod 5 = 4.
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Theorem 1.2. Let n be an integer. Then 3 | n2 if and only if 3 | n.

Proof. Because the statement is a biconditional we have to prove the follow-
ing two statements

a) if 3 | n then 3 | n2 .
b) if 3 | n2 then 3 | n.

To show a) we assume that 3 | n, therefore n = 3k for some integer k. It
follows that n2 = (3k)2 = 3(3k2). Because 3k2 is an integer, it follows that
3 | n2.

For the second statement we will use proof by contrapositive to show that
if 3 - n then 3 - n2.

Let 3 - n. Then n = 3q + r for some integers q and r.
The remainder r can be 1 or 2.
Case 1: r = 1. Then n = 3q + 1 and

n2 = (3q + 1)2

= 9q2 + 6q + 1

= 3(3q2 + 2q) + 1.

Because 3q2 + 2q is an integer, 3 - n2.
Case 1: r = 2. Then n = 3q + 2 and

n2 = (3q + 2)2

= 9q2 + 12q + 4

= 3(3q2 + 4q + 1) + 1.

Since 3q2 + 4q + 1 is an integer, 3 - n2.
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1 Congruence

In several occasions we are interested in the parity of integers. We noticed
that two integers are both even if both have a remainder 0 when divided by
2. Also, two integers are odd if they both have a remainder 1 when divided
by 2.

In this section we deal with numbers that have the same remainder when
divided by an integer n with n ≥ 2. We begin with a definition of congruence
and reach this observation.

Definition 1.1. For integers a, b and n ≥ 2, the integer a is congruent to b
modulo n if n | (a− b).

To show that a is congruent to b modulo n we use the notation a ≡ b(
mod n). To show that a is not congruent to b modulo n we write a 6≡ b(
mod n).

Example 1.1. We observe that
47 ≡ 5( mod 7), because 7 | (47− 5).
93 ≡ 84( mod 9), because 9 | (93− 84).
58 6≡ 47( mod 6), because 6 | (58− 47).
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Theorem 1.2. Let a, b and n ≥ 2 be integers. Then a ≡ b( mod n) if and
only if a = b + kn for some integer k.

Proof. This is a biconditional so we need to prove two statements.
We first show that if a ≡ b( mod n), then a = b+ kn for some integer k.
Let a ≡ b( mod n) for a, b, n ∈ Z with n ≥ 2.
Then according to the definition n | (a− b).
Hence, a− b = nk for some integer k and a = b + nk.

Next, we show that if a = b + kn, then a ≡ b( mod n).
We assume that a = b + kn for an integer k.
Then a− b = kn, therefore n | (a− b).
By definition this means that a ≡ b( mod n).
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Theorem 1.3. Let a, b and n ≥ 2 be integers. Then a ≡ b( mod n) if and
only if a and b have the same remainder when divided by n.

Proof. This is a biconditional so we need to prove two statements.
First, we show that if a and b have the same remainder when divided by

n, then a ≡ b( mod n).
Let a and b have the same remainder r > 0, r ∈ Z when divided by n.
Therefore, a = nk1 + r and b = nk2 + r, for k1, k2 ∈ Z.
We have that a−b = nk1+r−(nk2+r) = nk1+r−nk2−r = nk1−nk2 =

n(k1 − k2).
Because k1 − k2 is an integer, n | (a− b).

We also need to show that if a ≡ b( mod n), then a and b have the same
remainder when divided by n.

We use proof by contrapositive.
We assume that a and b have different remainders when divided by n.
Hence, a = k1n + r1 and b = k2n + r2 with r1 6= r2.
We will show that a 6≡ b( mod n).
Then a−b = k1n+r1−(k2n+r2) = k1n+r1−k2n−r2 = (k1−k2)n+(r1−r2).
Because r1 6= r2 → r1 − r2 6= 0, therefore n - (a − b). This means that

a 6≡ b( mod n).

Corollary 1.4. Let a, b and n ≥ 2 be integers. Then a ≡ b( mod n) if and
only if

a mod n = b mod n.

Example 1.2. Use Corollary 1.4 to determine whether the following pairs
of integers a, b for integer n ≥ 2 are a ≡ b( mod n).

(a) a = 31, b = 47, n = 3.
(b) a = 35, b = 59, n = 6.

Answer
(a) We observe that 31 mod 3 = 1 and 47 mod 3 = 2. Because 31

mod 3 6= 47 mod 3, it follows by Corollary 1.4 that 31 6≡ 47( mod 3).
(b) We observe that 35 mod 6 = 5 and 59 mod 6 = 5. Because 35

mod 6 = 59 mod 6, it follows by Corollary 1.4 that 35 ≡ 59( mod 6).
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1 Greatest Common Divisors

Definition 1.1. Let a, b, d be integers, where a and b are not both 0 and
d 6= 0. The integer d is a common divisor of a and b if d | a and d | b.

Definition 1.2. For integers a and b not both 0, the greatest common divisor
of a and b is the greatest positive integer that is a common divisor of a and
b. The number is denoted by gcd(a, b).

Example 1.1. Determine by observation the greatest common divisor of
each of the following pairs a, b of integers.

(a) a = 15, b = 25, (b) a = 16, b = 80
(c) a = −14, b = −18, (d) a = 0, b = 6

Answer
(a) gcd(15, 25) = 5, (b) gcd(16, 80) = 16
(c) gcd(−14,−18) = 2, (d) gcd(0, 6) = 6

From the previous example we observe the following:
(1) gcd(a, b) = gcd(|a|, |b|)
(2) gcd(a, 0) = |a|
(3) if a, b 6= 0 and a | b, then gcd(a, b) = a.

1



1.1 The Euclidean Algorithm

Theorem 1.3. Let a and b be two positive integers. If b = aq + r for some
integers q and r, then

gcd(a, b) = gcd(r, a).

Let a < b in the previous theorem. If we also assume that q is the quotient
and r is the remainder, when b is divided by a, then

gcd(a, b) = gcd(r, a), with 0 ≤ r < b.
Now if r = 0 then gcd(a, b) = gcd(0, a) = a.
If r 6= 0, then we continue and divide a by r with remainder r2, so

gcd(r, a) = gcd(r2, r). We continue this until we reach a remainder equal to
0.

gcd(a, b) = gcd(r, a) = gcd(r2, r) = gcd(r3, r2) = ... = gcd(0, rk) = rk.
Therefore, the greatest common divisor of a and b is the last nonzero

remainder obtained when the sequence of divisions described above is per-
formed. This method for determining gcd(a, b) is called the Euclidean algo-
rithm.

Example 1.2. Use the Euclidean algorithm to find gcd(384, 477).

Answer We recursively apply the Euclidean algorithm to the remainder
of each division as follows.

477 mod 384 = 93

384 mod 93 = 12

93 mod 12 = 9

12 mod 9 = 3

9 mod 3 = 0.

Therefore gcd(384, 477) = 3.
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1.2 Least Common Multiples

Definition 1.4. For two positive integers a and b, an integer n is a common
multiple of a and b if n is a multiple of a and b. The smallest positive integer
that is a common multiple of a and b is the least common multiple of a and
b. The number is denoted by lcm(a, b).

Example 1.3. Determine by observation the least common multiple of a
and b.

(a) a = 6 b = 9, (b) a = 10 b = 10,
(c) a = 5 b = 7, (d) a = 15 b = 30,

Answer
(a) lcm(6, 9) = 18, (b) lcm(10, 10) = 10
(c) lcm(5, 7) = 35, (d) lcm(15, 30) = 30

Theorem 1.5. For every two positive integers a and b,
ab = gcd(a, b)lcm(a, b)
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1.3 Relatively Prime Integers

Definition 1.6. Two integers a and b not both 0, are relatively prime if
gcd(a, b) = 1.

Result 1.7. Every two consecutive positive integers are relatively prime.

Proof. Let n and n+1 be consecutive positive integers and let d = gcd(n, n+
1).

Hence d | n and d | n + 1. This means that n = dr and n + 1 = ds for
some integers d and s.

Based on these two relations, dr + 1 = ds→ 1 = ds− dr → 1 = d(s− r).
Because s− r is an integer, d | 1, therefore d ≤ 1. Also, d ≥ 1, so d = 1.
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1.4 Linear Combinations of Integers

Definition 1.8. Let a and b be two integers. An integer of the form ax+ by,
where x and y are integers, is a linear combination of a and b.

Theorem 1.9. Let a and b be integers that are not both 0. Then gcd(a, b) is
the smallest positive integer that is a linear combination of a and b.

Example 1.4. For each of the following pairs of integers, express d =
gcd(a, b) as a linear combination of a and b.

(a) a = 10 b = 14, (b) a = 12 b = 12
(c) a = 18 b = 30, (d) a = 25 b = 27

Answer
(a) gcd(10, 14) = 2 = 10 · 3 + 14 · (−2)
(b) gcd(12, 12) = 12 = 12 · 1 + 12 · 0
(c) gcd(18, 30) = 6 = 18 · 2 + 30 · (−1)
(d) gcd(25, 27) = 1 = 25 · 13 + 27 · (−12)

We can solve (d) using the Euclidean algorithm
27 = 25 · 1 + 2→ 2 = 27− 25 · 1
25 = 12 · 2 + 1→ 1 = 25− 12 · 2
Therefore

1 = 25− 12 · (27− 25 · 1)

= 25− 12 · 27 + 12 · 25

= 13 · 25− 12 · 27

Corollary 1.10. Let a and b be integers that are not both 0 and let d =
gcd(a, b). If n is an integer that is a common divisor of a and b then n | d.

Proof. Based on theorem 1.9 d = ax + by for some integers x, y.
Also n | a and n | b, therefore a = nq and b = nr for some integers q and

r.
So d = ax + by = nqx + nry = n(qx + ry).
Because qx + ry is an integer, n | d.
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Corollary 1.11. Two integers a and b are relatively prime if and only if
1 is a linear combination of a and b; that is, gcd(a, b) = 1 if and only if
ax + by = 1 for some integers x and y.

Example 1.5. Use Corollary 1.11 to show that the following pairs are rela-
tively prime.

(a) every two consecutive integers
(b) every two odd integers that differ by 2.

Answer
(a) Let n ∈ Z and the consecutive integer n + 1.
Because (−1) · n + n + 1 = 1.
By the Corollary 1.11 it follows that gcd(n, n + 1) = 1 and m− n = 2.

(b) Let an odd integer m such that m = 2k + 1 and an odd integer
n = m + 2 = 2k + 1 + 2 = 2k + 3 with k ∈ Z.

Since 1 = (2k + 1)(k + 1) + (2k + 3)(−k), by the Corollary 1.11 it follows
that gcd(m,n) = 1.

Theorem 1.12. Let a, b and c be integers with a 6= 0. If a | bc and
gcd(a, b) = 1, then a | c.

Proof. Let a | bc. Then bc = qa for some integer q.
Because gcd(a, b) = 1, by the Corollary 1.11 it follows that ax + by = 1

for some integers a and b.
Therefore c = c · 1 = c(ax + by) = cax + cby = cax + qay = a(cx + qy).
Because cx + qy is an integer, it follows that a | c.

Corollary 1.13. Let b and c be integers and let p be a prime. If p | bc, then
either p | b or p | c.

Theorem 1.14. Let a1, a2, ..., an be n ≥ 2 integers and let p be a prime. If
p | a1a2...an,

then p | ai for some integer i with 1 ≤ i ≤ n.

Theorem 1.15 (The Fundamental Theorem of Arithmetic). Every integer
n ≥ 2 is either prime or can be expressed as a product of (not necessarily
distinct) primes, that is,

n = p1p2...pk,
where p1, p2, ..., pk are primes. This factorization is unique except possibly

for the order in which the primes appear.
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1 Counting

One of the topics of discrete mathematics is called combinatorics. This is
a branch of mathematics that deals with the study of configurations or ar-
rangements of objects.

Some fundamental topics that combinatorics deal with are the following:

1. Existence: Is such a configuration or arrangement possible?

2. Enumeration: How many such configurations are there?

3. Optimization: Is some arrangement of a certain type more desirable in
some way?

In this chapter we are concerned with the second topic. This area is
called enumerative combinatorics, that is the subject of counting. Next, we
will review some fundamental principles of counting.
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1.1 The Multiplication and Addition Principles

1.1.1 The Multiplication Principle

Definition 1.1 (The Multiplication Principle). A procedure consists of a
sequence of two tasks. To perform this procedure, one performs the first
task followed by performing the second task. If there are n1 ways to perform
the first task and n2 ways to perform the second task after the first task has
been performed, then there are n1n2 ways to perform the procedure.

Example 1.1. At DSU a student is required to take a 2-course sequence
during the senior year. The first course can be any of the three courses CS
410, CS 420, or CS 430.

To complete a sequence the student has two choices after taking any of
the previous three courses; she can take CS 411 or CS 412 after CS 410, CS
421 or CS 422 after CS 420, or she can take CS 431 or CS 432 after CS 430.

How many choices does she have for a required 2-course sequence?

Answer
We observe that there are three possible courses for the first course in a

2-course sequence.
Once the first course has been taken, the student can select between two

options for the second course to complete the sequence.
Therefore, by the Multiplication Principle it follows that the total number

of possibilities for this 2-course sequence is 3 · 2 = 6.

The previous 2-course sequence can be represented by a specific type of
diagram called a tree diagram depicted in Figure ??. Each course sequence
can be created by following the tree diagram from top to bottom.
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Figure 1: Tree diagram for course sequence.

The Multiplication Principle determines the number of ways of perform-
ing a procedure that consists of two tasks. We can generalize this principle
for more than two tasks, for example if we have three tasks T1, T2, T3 in one
procedure. This can be done by grouping two tasks, let’s say T1 and T2, in a
procedure B, then create a procedure A that consists of the procedure B and
task T3. So the number of ways for performing B is n1n2 and the number
of ways for performing procedure A is (n1n2)n3 = n1n2n3. This leads to the
General Multiplication Principle.

Definition 1.2 (The (General) Multiplication Principle). Performing a cer-
tain procedure consists of performing a sequence of m ≥ 2 tasks T1, T2, ..., Tm.
If there are ni ways of performing Ti after any preceding tasks have been per-
formed for i = 1, 2, ..,m, then the total number of ways of performing the
procedure is n1n2...nm.

Example 1.2. In a certain computer science course, there is a weekly quiz.
The quiz for today consists of ten true-false questions. How many different
sequences are possible for this quiz?

Answer
Each of the ten questions can be answered by true or false, that is two

ways.
Therefore, the numer of different responses to the test is

2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 210.
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This example can be interpreted as the number of 10-bit sequences, where
zero corresponds to false and 1 corresponds to true.

Theorem 1.3. If A and B are two finite nonempty sets with |A| = m and
|B| = n, then the number of different functions from A to B is |B||A| = nm.

Proof. Let A = {a1, a2, ..., am}. Then a function f : A→ B has the form
f = {(a1, ), (a2, ), ..., (am, )}.

Each blank space is to be filled by an element of the co-domain B.
Because there are n choices for each image, the Multiplication Principle

supports that the number of all choices is
n · n... · n = nm.
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Theorem 1.4. If A and B are two sets with |A| = m and |B| = n, where
m ≤ n, then the number of different one-to-one functions from A to B is

n!
(n−m)!

.

Proof. First, when m = n, we observe that an one-to-one function f : A→ B
can be written as

f = {(a1, ), (a2, ), ..., (an, )}.
We note that there are n possible images in the ordered pair (a1, ).
Because f is one-to-one, the image of for a1 will be excluded from the

possible images of a2, therefore there are n− 1 possible images for (a2, ).
We continue this logic until we reach the last element of the domain, that

has to have 1 image.
By the multiplication principle it follows that the number of possible

images for the one-to-one function f is:
n · (n− 1) · (n− 2) · ... · 1 = n!.

Next we assume that m < n. Then each one-to-one function f : A → B
can be written as

f = {(a1, ), (a2, ), ..., (am, )}.
Following similar logic, the number of possible one-to-one functions f :

A→ B is
n · (n− 1) · (n− 2) · ... · (n−m + 1).

This is equivalent to
n · (n− 1) · (n− 2) · ... · (n−m + 1) · (n−m)!

(n−m)!
= n!

(n−m)!
.

Example 1.3. Determine the number of one-to-one functions from A to B,
where |A| = 6 and |B| = 8.

Answer
The number of possible one-to-one functions from A to B according to

the Theorem ?? is:
8!

(8−6)! = 8!
2!

= 8·7·6...·2·1
2·1 = 8 · 7 · 6 · 5 · 4 · 3 = 20160.
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We now assume a procedure of m tasks Ti, i ∈ [1,m], where Ai is the set
of possible ways to perform Ti.

If ni = |Ai|, then the number of ways for performing the procedure is
n1n2...nm. Each way for performing the procedure can be represented by the
Cartesian product A1 × A2 × ...× Am. Then we have

|A1 × A2 × ...× Am| = n1n2...nm.
This leads to

|A1 × A2 × ...× Am| = |A1| · |A2| · ... · |Am|.

6



Discrete Math I - MTSC 213
Lecture 35

Sokratis Makrogiannis, PhD, Assistant Professor
Department of Mathematical Sciences, Delaware State University

November 20, 2013

1 The Addition Principle

Definition 1.1 (The Addition Principle). A procedure consists of two tasks
that cannot be performed simultaneously. To perform this procedure, either
of the two tasks is performed. If the first task can performed in n1 ways
and the second can be performed in n2 ways, then the number of ways of
performing this procedure is n1 + n2.
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The Addition Principle can be generalized for more tasks as follows.

Definition 1.2 (The (General) Addition Principle). Performing a certain
procedure consists of performing one of m ≥ 2 tasks T1, T2, ..., Tm, no two of
which can be performed at the same time. If the task Ti can be performed in
ni ways for 1 ≤ i ≤ m, then the number of ways of performing this procedure
is n1 + n2 + ... + nm.

Example 1.1. After a student graduates from college, he wants to work on
a Master’s degree in computer science. He is considering two universities in
Iowa, four universities in Pennsylvania and three universities in West Vir-
ginia. By the Addition Principle the number of choices he has for graduate
studies are 2 + 4 + 3 = 9.

Let a procedure consist of m ≥ 2 tasks T1, T2, ..., Tm. Let Ai be the set
of ways for performing task Ti with |Ai| = ni. Given that Ai are pairwise
disjoint sets, the procedure can be performed in n1 +n2 + ..+nm ways. Then
A1 ∪A2 ∪ ...∪Am is the set of all ways of performing the procedure and the
corresponding number of ways is

|A1 ∪ A2 ∪ ... ∪ Am| = n1 + n2 + .. + nm.

Therefore if A1, A2, ..., Am are pairwise disjoint sets with m ≥ 2, then
|A1 ∪ A2 ∪ ... ∪ Am| = |A1|+ |A2|+ ... + |Am|.

Example 1.2. A recent graduate has obtained a position with an electronics
company and has to spend the first four months in training either in the
Eastern US or the Western US. In the Western US she can spend the first two
months in Portland or Los Angeles and the second two months in Sacramento,
Seattle or San Francisco. In the Western US, she can spend the first 2 months
in Miami, Boston, or Dover and the second two months in Wilkes-Barre,
Niskayuna, Baltimore, or Virginia Beach. How many choices does the new
employee have for training?

Answer
First, by the Multiplication Principle, the employee has 2 · 3 = 6 options

in the Western US and 3 · 4 = 12 options in the Eastern US. It follows by
the Addition Principle that the total number of options is 6 + 12 = 18.
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Example 1.3. How many 9-bit sequences begin with
10101 or 0101 ?

Answer
By the Multiplication Principle it follows that the number of 9-bit se-

quences starting with 10101 is 2 · 2 · 2 · 2 = 24 = 16.
Similarly, we observe that the number of 9-bit sequences starting with

0101 is 2 · 2 · 2 · 2 · 2 = 25.
By the Addition Principle it follows that the total requested number of

9-bit sequences is 16 + 32 = 48.

Example 1.4. In a school election, three students are to be elected to the
student council. One student must be freshman, one sophomore and one
junior.

(a) Given that there are 6 freshman, 4 sophomore and 7 junior candidates
in how many different ways can a ballot be marked?

(b) After the election the president of the student council will select one
of the remaining candidates as an at-large member. How may options are
there?

Answer
(a) First, by the Multiplication Principle it follows that the ballot can be

marked in 6 · 4 · 7 = 168 different ways.
(b) The Addition Principle dictates that the total number of options for

the at-large member are 5 + 3 + 6 = 14.
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1 The Principle of Inclusion-Exclusion

We have seen that if A and b are two disjoint finite sets, then |A ∪ B| =
|A|+ |B|.

Another question is what is |A ∪ B| equal to, when A and B are not
disjoint? For example, what is the cardinality of the set of the 50 largest
cities or the state capitals of the US?

Such questions can be resolved by the Principle of Inclusion-Exclusion.

Definition 1.1 (The Principle of Inclusion-Exclusion). A procedure consists
of two tasks. To perform the procedure, one performs either of the two tasks.
If the first task can be performed in n1 ways, the second task can be performed
in n2 ways and the two tasks can be performed simultaneously in n12 ways,
then the total number of ways of performing the procedure is

n1 + n2 − n12.

The Principle of Inclusion-Exclusion can also be expressed in terms of
finite sets as follows

Definition 1.2 (The Principle of Inclusion-Exclusion (for two sets)). For
every two sets A and B

|A ∪B| = |A|+ |B| − |A ∩B|.
In particular, if A and B are disjoint

|A ∪B| = |A|+ |B|.
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The last case corresponds to the Addition Principle.

Example 1.1. How many 8-bit sequences begin with 110 and end with 1100?

Answer
We are considering 8-bit sequences of one of the types

110 or 1100.
By the Multiplication Principle it follows that the number of bitstrings

beginning with 110 is 25 = 32.
Similarly, the number of bitstrings ending with 1100 is 24 = 16.
We also observe that there are bit-strings beginning with 110 and

ending with 1100. These are of the form 110 1100 and their number is
21.

Therefore by the Inclusion-Exclusion Principle it follows that our re-
quested number is 32 + 16− 2 = 46.

Now let’s examine the case of three sets. The Addition Principle states
that |A ∪B ∪ C| = |A|+ |B|+ |C|.

What happens though when the sets A, B and C are not pairwise disjoint?

Example 1.2. In a discrete mathematics course there are 26 students ma-
joring in CS, 22 majoring in Math and 8 majoring in both CS and Math.
How many students major in CS or Math?

Answer
We have that |C| = 26, |M | = 22 and |C ∩M | = 8. We are looking for

|C ∪M |.
By the Principle of Inclusion-Exclusion it follows that

|C ∪M | = |C|+ |M | − |C ∩M | = 26 + 22− 8 = 40.
There are 40 students majoring in CS or Math.
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Definition 1.3 (The Principle of Inclusion-Exclusion (for three sets)). For
every three finite sets A, B and C,
|A ∪B ∪ C| = |A|+ |B|+ |C| - |A ∩B| - |A ∩ C| - |B ∩ C| + |A ∩B ∩ C|.

Example 1.3. In a convention venue 60 attendees were questioned about
their lunch preferences and their responses were listed as follows

25 like beef
26 like tofu
24 like chicken
15 like beef and tofu
12 like beef and chicken
5 like tofu and chicken.
4 like all three.
The question is, how many do not like any of the above food types?

Answer
We have the following cardinalities in set notation: |B| = 25, |T | = 26,

|C| = 24, |B ∩ T | = 15, |B ∩ C| = 12, and |T ∩ C| = 15.
By the Principle of Inclusion-Exclusion we have that

|B ∪ T ∪ C| = |B|+ |T |+ |C| - |B ∩ T | - |B ∩ C| - |T ∩ C| + |B ∩ T ∩ C|
|B ∪ T ∪ C| = 25 + 26 + 24− 15− 12− 5 + 4 = 47.

Therefore 47 conference attendees like beef, tofu, or chicken, and 60−47 =
13 do not like any of the above food types.

The above reasoning can be extended to an arbitrary number of sets as
follows

Definition 1.4 (The Principle of Inclusion-Exclusion (for n ≥ 2 sets)). If
A1, A2, ..., An are n ≥ 2 finite sets, then

|A1 ∪ A2 ∪ ... ∪ An| =
∑

1≤i≤n |Ai| −
∑

1≤i<j≤n |Ai ∩ Aj|+
∑

1≤i<j<k≤n |Ai ∩ Aj ∩ Ak| − ...

+(−1)n+1|A1 ∩ A2 ∩ ... ∩ An.
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1 The Pigeonhole Principle

We begin with an observation: when an athlete has won four medals in a
tournament, we expect that at least two of these medals must be gold, silver,
or bronze.

Let’s consider the following:

Example 1.1. A student has been collecting stamps from three countries,
let’s say Germany, France and Jamaica. If she has n stamps in total, then
at least dn/3e come from Germany, or at least dn/3e come from France, or
at least dn/3e come from Jamaica.

Definition 1.1 (The Pigeonhole Principle). If a set S with n elements is
divided into k pairwise disjoint subsets S1, S2, ..., Sk, then at least one of the
subsets must have at least dn/ke elements.

Proof. Assume that none of the subsets has at least dn/ke elements.
Because dn/ke is an integer, every subset Si has at most dn/ke − 1 ele-

ments.
We observe that that 0 ≤ dn/ke − (n/k) < 1, therefore n/k ≤ dn/ke <

(n/k) + 1, and dn/ke − 1 < n/k.
Because Si with i = 1, 2, ..., k are pairwise disjoint subsets of S and S =

S1 ∪ S2 ∪ ... ∪ Sk, by the Addition Principle it follows that n = |S| = |S1|+
|S2|+ ...+ |Sk| < k(n/k) = n.

Therefore n < n, which is a contradiction.
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Example 1.2. A teacher of a Discrete Mathematics course has 28 students.
(a) The teacher must assign each student one of the grades A,B,C,D, F .

What is the largest number of students that must be assigned the same
grade?

(b) It is known that the ages of the students in class range from 16 to
43. What is the maximum number of students in the class who must be the
same age?

(c) In order to qualify for this discrete math class, each student must have
passed one of three prerequisite courses. What is the maximum number of
students in the class who must have passed the same prerequisite course?

Answer
(a) The number of students that must be assigned the same grade is

d28/5e = 6.
(b) There are 28 years in the range 16 to 43.
The maximum number of students who must be the same age are d28/28e =

1.
(c) The maximum number of students who must have passed the same

prerequisite course is d28/3e = 10.
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Definition 1.2 (The (General) Pigeonhole Principle). A set S with n ele-
ments is divided into k pairwise disjoint subsets S1, S2, ..., Sk, where |Si| ≥ ni

for a postive integer ni with i = 1, 2, ..., k. Then each subset of S with at
least

1 +
∑k

i=1(ni − 1)
elements contains at least ni elements of Si for some integer i with 1 ≤

i ≤ k.

Proof. Suppose that there is some subset A of S such that
|A| ≥ 1 +

∑k
i=1(ni − 1)

but A does not contain at least ni elements of Si for some integer i with
1 ≤ i ≤ k.

Then A must contain at most ni − 1 elements of Si for every integer i
with 1 ≤ i ≤ k.

Then |A| ≤
∑k

i=1(ni − 1) ≤ |A| − 1, which is a contradiction.

Example 1.3. At a certain university, discrete mathematics is often taught
at a large lecture class. Let’s suppose that, on the average, 10% of the
students receive A’s, 25% receive B’s, 40% receive C’s, 20% receive D’s, and
5% receive F’s.

How many students would have to be in the classe so that the professor
assigns either 10 A’s, 25 B’s, 40 C’s, 20 D’s, or 5 F’s?

Answer
We apply the General Pigeonhole Principle.
We have that the least number of students that have to be in the class is

N = 1 + 9 + 24 + 39 + 19 + 4

= 96.
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Example 1.4. How many people need to be present at a party to be sure
that at least 3 of them have a birthday during June, at least 3 of them have
a birthday during July, at least 3 of them have a birthday during August,
or at least 4 of them have a birthday during the same month for one of the
other months?

Answer
By the General Pigeonhole Principle it follows that the smallest number

of people that need to be at the party is
1 + 2 + 2 + 2 + 9 · 3 = 7 + 27 = 34.
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1 Permutations and Combinations

1.1 Permutations

Definition 1.1 (Permutation). A permutation of a nonempty set S is an
arrangement or ordered list of the elements of S.

Example 1.1. Consider the set S = {1, 2, 3}. One permutation of S is 3, 1, 2
or 312.

All of the permutations of the set S are:
123 213 312
132 231 321

We can also use a tree diagram to represent all permutations. We observe
that this procedure is analogous to finding the number of one-to-one functions
from A to B, where |A| = |B| = 3.

For the general case of a positive integer n, the number of permutations
of the integers 1, 2, ..., n (or of any n objects) is given by

n(n− 1)(n− 2)...3 · 2 · 1 = n! (n factorial)

1



Definition 1.2 (r-Permutation). An ordered list of r elements of an n-
element set S is called an r-permutation of the elements of S. The number
of r-permutations of an n-element set is denoted by P (n, r).

Theorem 1.3. The number of r-permutations of an n-element set (where
1 ≤ r ≤ n) is

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 2)(n− r + 1) =
n!

(n− r)!
).

Example 1.2. Let S = {a, b, c, d, e, f, g}.
(a) Give two examples of permutations of S.
(b) How many permutations of S are there?
(c) Give two examples of 4-permutations of S.
(d) How many 4-permutations of S are there?

Answer
(a) Two permutations are abcdegf and bacdefg.
(b) There are 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 permutations in total.
(c) Two 4-permutations of S are abcd and dcba.

(d) There are
7!

3!
=

7 · 6 · 5 · 4 · 3!

3!
= 7·6·5·4 = 210·4 = 820 4-permutations

in total.
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Example 1.3. Seven students namely 4 men and 3 women, are to present
their solutions to seven different problems in class.

(a) In how many different orderings can this be done?
(b) In how many orderings can these presentations be made if the pre-

sentations are to alternate between men and women?
(c) In how many orderings can these presentations be made if the women

are to present their problems consecutively and the men are to present their
problems consecutively?

Answer
(a) The presentations can be done in the following number of ways:

P (7, 7) = 7! = 5040.
(b) We would have this type of ordering

MWMWMWM
So by the Multiplication Principle the number of possible orderings is

4 · 3 · 3 · 2 · 2 · 1 · 1 = 144.
(c) Then we would have 4! = 24 possible orderings of presentations for

men and 3! = 6 possible orderings of presentations for women.
If women present first, by the Multiplication Principle we have 3! · 4! =

6 · 24 = 144 possible orderings.
If men present first, by the Multiplication Principle we have 4! · 3! =

24 · 6 = 144 possible orderings.
By the Addition Principle it follows that the total number of orderings is

(3! · 4!) + (4! · 3!) = 144 + 144 = 288.
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1.2 Combinations

Definition 1.4 (r-Combination). Let S be an n-element set. An r-element
subset of S, where 0 ≤ r ≤ n, is called an r-combination of S. Therefore, the
number of r-combinations of an n-element set is C(n, r). An r-combination
is also referred to as an unordered list of r-elements or as an r-selection.

Let S = {a1, a2, ..., an} be an n-element set and T be one of the C(n, r)
element subsets with 1 ≤ r ≤ n.

The number of ways to order the elements of T is r!.
The number of possible orderings of all r-element subsets of S is r!·C(n, r).
The last quantity is equal to P (n, r).

Therefore C(n, r) =
P (n, r)

r!
.

Because P (n, r) =
n!

(n− r)!
, it follows that C(n, r) =

n!

r!(n− r)!
.

Theorem 1.5. For integers r and n with 0 ≤ r ≤ n, the number of r-
element subsets of an element set (also called r-combinations or r-selections
of an n-element set) is

C(n, r) =

(
n

r

)
=

n!

r!(n− r)!
.

Example 1.4. A certain committee is required to meet 3 days during each
February excluding weekends. If the coming February does not occur during
the leap year, how many different choices are there for meeting days?

Answer
Because the coming February has exactly 4 weeks, there are 4·5 weekdays

available for meetings.
So the 3-combinations within 20 days are:

20!

3!17!
=

20 · 19 · 18 · 17!

3!17!
=

20 · 19 · 18

3 · 2 · 1
= 20 · 19 · 3 = 1140.

Therefore, there are 1140 possible orderings for meetings in February.
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Theorem 1.6. For each integer n ≥ 0,(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2n

Theorem 1.7. For every two integers r and n with 0 ≤ r ≤ n,

C(n, r) = C(n, n− r) or

(
n

r

)
=

(
n

n− r

)
.

Proof #1. Observe that C(n, r) is the number of r-element subsets of an n-
element set S. However for each choice of an r-element subset belonging to
S, there is an n − r subset that does not belong to S, therefore C(n, r) =
C(n, n− r).

Proof #2. Observe that

C(n, r) =
n!

r!(n− r)!
and

C(n, n− r) =
n!

(n− r)!(n− (n− r))!
=

n!

(n− r)!r!
= C(n,r).

Example 1.5. How many subsets of S = {1, 2, ..., 8} contain three or more
elements?

Answer
The requested number is :(

8

3

)
+

(
8

4

)
+

(
8

5

)
+

(
8

6

)
+

(
8

7

)
+

(
8

8

)
= 56+70+56+28+8+1 = 219.

Another way is to utilize Theorem 1.6 to find the total number of subsets
and subtract the number of subsets with up to 2 elements. That is,

28 −
(

8

0

)
−

(
8

1

)
−

(
8

2

)
= 256− 1− 8− 28 = 256− 37 = 219.
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Let’s consider the usual case of C(n, 2) =

(
n

2

)
.

This is equal to

C(n, 2) =

(
n

2

)
=

n!

2!(n− 2)!
=

n · (n− 1) · (n− 2)!

2(n− 2)!
=

n · (n− 1)

2
. (1)

Example 1.6. By Equation 1 it follows that
C(5, 2) = (5 · 4)/2 = 10.

Also by Theorem 1.7 and Equation 1, we have that
C(9, 7) = C(9, 2) = (9 · 8)/2 = 36.

C(20, 18) = C(20, 2) = (20 · 19)/2 = 190.
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